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Abstract

A general program for item-response analysis is described that uses the stabilized Newton–Raphson

algorithm. This program is written to be compliant with Fortran 2003 standards and is sufficiently

general to handle independent variables, multidimensional ability parameters, and matrix

sampling. The ability variables may be either polytomous or multivariate normal. Items may be

dichotomous or polytomous.

Key words: log-linear models, exponential families
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To facilitate flexibility of model selection and to improve statistical procedures associated

with item-response theory (IRT), a computer program for item-response analysis has been

constructed. The program is designed to be compliant with standards for Fortran 2003. In

practice, it is implemented to be successfully compiled with PGI Fortran Version 11.1 and with

gfortran 4.6.1. The program is designed to treat one-parameter logistic (1PL), two-parameter

logistic (2PL), three-parameter logistic (3PL), partial credit (PC), generalized partial credit

(GPC), and nominal models, as well as mixed cases in which different items satisfy different

models. The program can be used with both one-dimensional and multidimensional latent

variables. These variables can be polytomous, or they can be continuous and have normal

distributions. The program is also capable of treating bifactor models and restricted bifactor

models. Weights, matrix sampling, and independent variables are permitted. The programming

is based on the stabilized Newton–Raphson algorithm (Haberman, 1988) rather than on the

expectation-maximization (EM) algorithm (Bock & Aitkin, 1981; Muraki, 1991). This change

facilitates computation of estimated asymptotic standard deviations of parameters and thus

facilitates examination of parameter identification. The program applies to IRT models that can

be described in terms of linear models for natural parameters of exponential models. Section 1

discusses the data considered by the program. Section 2 describes the general class of models that

can be treated. Section 3 describes the stabilized Newton–Raphson algorithm (Haberman, 1988)

employed for computations and provides details concerning its properties. Section 4 provides

input and output specifications.

Although the basic structure of the program is not expected to change much in the future,

it should be noted that the program and documentation are expected to be updated periodically

to accommodate additional procedures for model checking and additional estimates of population

parameters. In addition, a graphical user interface for the program is currently being prepared.

The current documentation is presented in a belief that it is better to provide documentation now

for a working program than to wait a substantial period of time until a final version is produced.

Copies of the files referenced in this report can be downloaded at

http://www.ets.org/research/media/Research/RR-13-32-files.zip
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1 Data

Data consist of item responses, examinee weights, and independent variables. As common

in IRT, each examinee receives a collection of test items. To each item corresponds a finite number

of scores. Not all examinees need to receive the same items, and the items may be multiple-choice

items or constructed-response items that have a finite number of possible scores. The J > 1

items are numbered from 1 to J , and the n > 1 examinees are numbered from 1 to n. If item j,

1 ≤ j ≤ J , is presented to examinee i, then the observed item response Xij has Gj > 1 possible

integer values, and these values are the integers from 0 to Gj − 1. Thus Gj = 2 if item j is

dichotomous. If item j is not presented to examinee i, then Xij is some integer that is either

negative or at least Gj . Thus the examination responses can be described by an n by J array. For

examinee i, the set of presented items is Ji, and the indicator χij is 1 for j in Ji and 0 for an

integer j such that 1 ≤ j ≤ J , but j is not in Ji. In simple cases in which each examinee receives

all items, each Ji is the set of integers from 1 to J . To avoid trivial identification problems, it

is always assumed that each item j, 1 ≤ j ≤ J , is presented to some examinee i. The array J

provides the set Ji for 1 ≤ i ≤ n. For each examinee i, the notation Xi is used for the array of

responses Xij , j in Ji, to items presented to examinee i. The notation X is employed for an array

of individual item responses Xi, 1 ≤ i ≤ n. For each examinee i, the set of possible values of Xi is

Xi, so that Xi consists of arrays x of integers xj , 0 ≤ xj < Gj , j in Ji. The set of possible values

of X is X , so that X consists of arrays x of xi in Xi, 1 ≤ i ≤ n.

Associated with examinee i is a sample weight wi > 0. In simple cases, this sample weight

wi is 1; however, other weights are often used in assessments that are parts of population surveys.

In addition, U ≥ 1 real predicting variables are observed for each examinee. The predicting

(explanatory) variables for examinee i are Ziu, 1 ≤ u ≤ U , and the U -dimensional vector Zi has

elements Ziu, 1 ≤ u ≤ U . The n by U matrix Z has row i and column u equal to Ziu for 1 ≤ i ≤ n

and 1 ≤ u ≤ U . The convention is adopted that Zi1 = 1, so that the first independent variable is

simply the constant 1. The choice of predictors varies with the application. Possible predictors

may be indicators for test administrations, membership in a gender group, age of the examinee, or

years of education of the examinee. Thus, if a single categorical predictor with U > 1 categories is

considered, then Ziu, 2 ≤ U , may be defined as 1 if the categorical predictor has value u and 0

otherwise.
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2 Model Definition

The models under study are latent-structure models. Their definition requires an initial

consideration of random vectors and conditional probabilities. The basic latent-structure model

may then be defined, and the specific class of latent-structure models to be studied can then be

examined.

2.1 Random Vectors and Conditional Probabilities

It is assumed that the individual responses Xi, 1 ≤ i ≤ n, are random vectors that are

conditionally independent given the predictors Zi. For some nonempty set Z of U -dimensional

vectors, it is assumed that Zi is in Z for each examinee i. Thus Z is in the set Zn of n by U

matrices z with rows zi in Z, 1 ≤ i ≤ n. For a possible response x of examinee i in the set Xi

of all response arrays for that examinee and for a possible predictor vector z in the set Z of all

possible values of the predictor vector Zi, pi(x|z) > 0 denotes the conditional probability that

Xi = x given that Zi = z. It is convenient to consider several arrays of conditional probabilities.

For examinee i, the array pi(·|z) has elements pi(x|z) for x in Xi and z in Z. For all n examinees

p( z) has elements pi(x z n
i) for x in i, 1 i n, and for z in .

,

·| | X ≤ ≤ Z

2.2 Latent-Structure Models

The probability models under study are latent-structure models. Associated with each

examinee i is a K ≥ 1-dimensional random latent vector θi with elements θik, 1 ≤ k ≤ K. The set

of possible values of θi is Ω for each examinee i. In addition, for each presented item j, there is

an underlying polytomous random variable Yij that determines the value of the observed response

Xij . In many cases, Yij and Xij are exactly the same; however, in situations that involve models

for guessing behavior or noncompensatory item-response models, the more general definition of

Yij is helpful. Because Yij determines Xij , the random variable Yij has Hj ≥ Gj possible values.

These values are integers from 0 to Hj − 1. The relationship of Yij to Xij is specified by a

category mapping. For simplicity, this mapping is a nondecreasing function. Thus, for integers

Hxj , 0 ≤ x ≤ Gj , H0j = 0, HGjj = Hj − 1, and Hxj < H(x+1)j for 0 ≤ x < Gj − 1. The set Hxj

consists of the integers h such that Hxj ≤ h < H(x+1)j for 0 ≤ x < Gj − 1. If Yij is in Hxj and

0 ≤ x < Gj − 1, then Xij = x. In the simplest cases, Yij and Xij are the same, so that Hxj = x for
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0 ≤ x < Gj , and Gj = Hj ; however, the more general formulation can be helpful in the treatment

of models that involve guessing or in the case of noncompensatory models.

In the case of guessing, one might have Yij = 2Yij1 + Yij2, where Yij1 and Yij2 have values

0 or 1. Thus Hj = 4. If Gj = 2, H0j = 0, H2j = 3, and H1j = 1, then Xij is 0 if Yij1 and Yij2 are

both 0. Here Yij1 is 1 if the examinee knows the right response, whereas Yij2 is 1 if the examinee

correctly guesses the right response. Otherwise Xij is 1.

In a noncompensatory model in which a correct response requires that three conditions

must be met to provide a correct solution, one might have Yij = 4Yij1 + 2Yij2 + Yij3, where Yij1,

Yij2, and Yij3 have values 0 or 1. Thus Hj = 8. If Gj = 2, H0j = 0, H2j = 7, and H1j = 6, then

Xij is 1 if, and only if, Yij1, Yij2, and Yij3 are all 1.

Several arrays are often employed to treat the relationships between Xij and Yij for j in

Ji. The array H has elements Hxj , 0 ≤ x ≤ Hj , 1 ≤ j ≤ J . The random array Yi has elements

Yij , j in Ji.

The latent-structure assumptions are made that the pairs (Yi,θi), 1 ≤ i ≤ n,

are conditionally independent given the predictor array Z, and, for each examinee i, the

local-independence assumption is made that the Yij , j in Ji, are conditionally independent given

θi and Zi. Conditional distributions of individual item responses are assumed to be consistent for

all examinees in the following sense. For each item j, 1 ≤ j ≤ J , each nonnegative integer y < Hj ,

each z in Z, each ω in Ω, and each examinee i for which item j is presented (j is in Ji), a positive

real number pY j(y|ω) is the conditional probability that Yij = y given that θi = ω and Zi = z.

Thus, for each examinee i, 1 ≤ i ≤ n, item j in Ji, nonnegative integer x < Gj , vector z in Z, and

vector ω in Ω, the conditional probability that Xij = x given that θi = ω and Zi = z is

pj(x|ω) =
y∈H

∑
pY j(y|ω). (1)

xj

The conditional probability that Yij = y, 0 ≤ y < Hj , given that Xij = x, θi = ω, and Zi = z, is

then  pXj(x|ω)/pY j(y|ω), y
pj(y|x,ω) =

∈ Hxj , (2)
0, otherwise.

The latent-structure assumptions imply that the conditional probability that Xi = x in Xi

given θi = ω and Zi = z is then

pi(x|ω) =
∏

pj(xj |ω). (3)
j∈Ji
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The added assumption is made that, for examinee i, the conditional distribution of the

latent vector θi given the complete array Z of predictors for all examinees only depends on the

prediction vector Zi for examinee i. In other words, for each zi in Z, the conditional distribution

of θi given Zi = zi is the same as the conditional distribution of θi given Z = z if z is an n

by U matrix in Zn with row i equal to zi. To describe the conditional distribution of θi, let

Pθ(·|z) be the conditional distribution of θi given Zi = z in Z. In all cases under study, the

conditional moments of θi given Zi = z are defined for all z in Z. The notation µ(z) is used for

the conditional expectation of θi given Zi = z. For 1 ≤ k ≤ K, element k of µ(z) is µk(z). The

notation Σ(z) is used for the conditional covariance matrix of θi given Zi = z. For 1 ≤ k ≤ K and

1 ≤ k′ ≤ K, row k and column k′ of Σ(z) is denoted by Σkk′(z). In addition, it is helpful in the

study of Hessian matrices to let µk1k2k33(z) denote the conditional covariance of θik1 and θik2θik3

given Zi = z and to let µk1k2k3k44(z) denote the conditional covariance of θik1θik2 and θik3θik4

given Zi = z for 1 ≤ ke ≤ K for 1 ≤ e ≤ 4.

Under the model, the general notation

pi(x|z) = E(pi(x|θi)) =

∫
pi(x|ω)dPθ|Z(ω|z) (4)

may be used for x in Xi for the conditional probability that Xi = x given that Zi = z. If Ω is

finite, then pθ Z(ω|z) denotes the conditional probability that θi = ω in Ω given that Zi = z, and|

pX|Zi(x|z) =
∑

pi(x|ω)pθ (|Z ω|z). (5)
ω∈Ω

By Bayes’s theorem, the conditional probability that θi = ω in Ω given that Xi = x and Zi = z is

pi(x ω)pθ Z(ω z)
pθ|XZi(ω|x, z) =

| | |
. (6)

pX Zi(x| |z)

If Ω is the space RK of K-dimensional vectors and if the conditional density function of θi

given Zi = z at ω in Ω is fθ|Z(ω|z), then

pX|Zi(x|z) =

∫
pi(x|ω)fθ|Z(ω|z)dω. (7)

By Bayes’s theorem, the conditional density of θi given Xi = x and Zi = z is

pi(x ω)fθ Z(ω z)
fθ XZi(ω .| |x, z) =

| | |
(8)

pX|Zi(x|z)

The models used in the program involve a log-linear model for the conditional distribution

of Yij given θi, item j in the set Ji of presented items for examinee i, and an exponential family
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for the conditional distribution of θi given Zi. These models apply to GPC models, 1PL models,

2PL models, 3PL models, and nominal-response models but not to normal ogive models.

2.3 Model Definition for Items

The log-linear model for items is expressed in terms of the relationship of Yij to θi,

where item j is presented to examinee i. For a known positive integer D, the model involves

unknown location parameters τyj for 0 ≤ y < Hj and unknown scale parameters adyj , 1 ≤ d ≤ D,

1 ≤ y ≤ Hj . In addition, the model involves a known D by K real matrix A with rows Ad,

1 ≤ d ≤ D, and elements Adk, 1 ≤ d ≤ D, 1 ≤ k ≤ K. In the simplest cases, D = K and A is the

K by K identity matrix; however, models with more complex structure are often encountered.

The conditional distribution of Yij given θi depends only on Aθi. To facilitate model

definition, let ayj be the D-dimensional vector with elements adyj , 1 ≤ d ≤ D, and let

D

v′z =
∑

vdzd
d=1

for any D-dimensional vectors v and z with respective elements vd and zd, 1 ≤ d ≤ D. It is

assumed that

pY j(y|ω) = [M 1
j(ω)]− exp(τyj + a′yjAω), (9)

where
Hj−1

Mj(ω) =
∑

exp(τyj + a′yjAω). (10)
y=0

Linear models are then applied to the parameters τyj and adyj . These models can often be

expressed in terms of the logits

log[pY j(y|ω)/pY j(y
′|ω)] = τyj − τy′j + (ayj − ay′j)

′Aω. (11)

2.4 Model Definition for Latent Vectors

The latent vectors are assumed to have a probability distribution from an exponential

family. A polytomous case and a normal case are considered. For both cases, the basic parameters

are a K by U matrix Ψ with elements ψku, 1 ≤ k ≤ K, and 1 ≤ u ≤ U , and an array λ with
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elements λkk′u, 1 ≤ k ≤ k′ ≤ K, and 1 ≤ u ≤ U . For any z in Z, let Λ(λ, z) be the K by K

matrix with elements  (1/2)
∑ U u=1 λkk′uzu, k < k′,

Λ
∑U

kk′(λ, z) =  λkk uzu, k = k′, (12)
u=1 ′

U(1/2) u=1 λk′kuzu, k > k′,

for 1 ≤ k ≤ K and 1 ≤ k′ ≤ K. The absolute


value

∑
of the determinant of a K by K matrix ∆ is

denoted by ∆ .| |

2.4.1 The multivariate normal case

In the multivariate normal case, −Λ(λ, z) is positive definite for all z in Z and the density

f K/2 1/2
θ Z(ω|z) = (2π)− | − 2Λ(λ, z)| exp[(1/4)Z′Ψ′[Λ(λ, z)]−1Ψz + ω′Ψz + ω′Λ(λ, z)ω], (13)|

for ω in Ω, so that the conditional distribution of θi given Zi = z is multivariate normal with

mean

µ(z) = [−2Λ(λ, z)]−1Ψz (14)

and covariance matrix

Σ(z) = [−2Λ(λ, z)]−1. (15)

For later reference, the function W on Ω is defined so that W (ω) = 1 for all K-dimensional vectors

ω. In the multivariate normal case, µk1k2k33(z) = 0 and for 1 ≤ ke ≤ K for 1 ≤ e ≤ 3. In addition,

µk1k2k3k4(z) = Σk1k3(z)Σk2k4(z) + Σk1k4(z)Σk2k3(z) (16)

for 1 ≤ ke ≤ K for 1 ≤ e ≤ 4 (Isserlis, 1918).

2.4.2 The polytomous case

In the polytomous case, Ω is finite and, for some positive real numbers W (ω), ω in Ω,

∑W (ω) exp[ω′Ψz + ω′Λ(λ, z)ω]
pθ (|Z ω|z) = . (17)

θ ΩW (θ) exp[θ′Ψz + θ′Λ(λ, z)θ]∈

In the polytomous case, no restrictions need be made on Λ(λ, z). The random vector θi satisfies

a quadratic log-linear model (Haberman, 1979, chapter 6). This case is considered within the

general diagnostic model (von Davier, 2008).
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2.5 The Linear Model

To define the linear model, a vector β of dimension

∑J (K(K + 3)U
B = (D + 1) Hj + (18)

2
j=1

is defined based on the parameters τhj , adhj , ψku, and λkk′u. Although most casual users of the

program need not be concerned with this vector, knowledge of the vector definition is required for

specialized applications. Let

bτ (0, 1) = 1, (19)

bτ (0, j) = bτ (0, j − 1) +Hj−1, 1 < j ≤ J, (20)

bτ (h, j) = bτ (0, j) + h, 0 < h < Hj , (21)

ba(1, 0, 1) = bτ (Hj − 1, J) + 1, (22)

ba(1, 0, j) = ba(1, 0, j − 1) +DHj 1, 1 < j− ≤ J, (23)

ba(d, 0, j) = ba(1, 0, j) + d− 1, 1 < d ≤ D, (24)

ba(d, h, j) = ba(d, 0, j) +Dh, 0 < h < Hj , (25)

bψ(1, 1) = b(D,HJ − 1, J, a) + 1, (26)

bψ(k, 1) = bψ(1, 1) + k − 1, 1 < k ≤ K, (27)

bψ(k, u) = bψ(k, 1) +K(u− 1), 1 < u ≤ U, (28)

bλ(1, 1, 1) = bψ(K,U) + 1, (29)

bλ(1, k′, 1) = bλ(1, 1, 1) + k′(k′ − 1)/2, 1 < k′ ≤ K, (30)

bλ(k, k′, 1) = bλ(1, k′, 1) + k − 1, 1 < k ≤ k′, (31)

bλ(k, k′, u) = bλ(k, k′, 1) + (u− 1)K(K + 1)/2, 1 < u ≤ U. (32)

Then τhj is element bτ (h, j) of β, adhj is element ba(d, h, j) of β, ψku is element bψ(k, u) of β, and

λkk′u is element bλ(k, k′, u) of β. The linear model is defined by use of a known offset vector o of

dimension B with elements ob, 1 ≤ b ≤ B, and an integer C ≥ 0. If C = 0, then β = o. If C > 0,

then the model uses a known B by C matrix T with row b and column c equal to Tbc, 1 ≤ b ≤ B,

1 ≤ c ≤ C, where C ≥ 1. It is assumed in the model that

β = o + Tγ (33)
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for some γ in a nonempty open subset Γ of the space RC of C-dimensional vectors.

Given the array H of integers, the real matrix A, the array of sets J , and the weight

function W on the set Ω of possible values of the θi, the vector o, the matrix T, and the space

Γ, one may define the set P(H,A,J ,W,o,T,Γ|z), z in Zn, to be the collection of arrays p(·|z)

such that (1) to (33) are satisfied for some C-dimensional vector γ in Γ. The model is identified

for Z if to any member p(·|z) of P(H,A,J ,W,o,T|Z) corresponds a unique γ in Γ such that (1)

to (33) hold.

In many cases, added linear restrictions are imposed on γ to identify this parameter vector.

Let V ≥ 0 be a positive integer. If V = 0, then no added restrictions are used, and the set ΓV is

defined to be Γ. If V > 0, then a V by C matrix S with elements Svc, 1 ≤ v ≤ V , 1 ≤ c ≤ C, and

a V -dimensional vector s with elements sv, 1 ≤ v ≤ V , are given, and γ is required to satisfy the

constraint Sγ = s. The set of γ in Γ such that Sγ = s is denoted by ΓV . It is assumed that ΓV is

not empty. The constraint normally is selected so that to any member of P(H,A,J ,W,o,T|Z)

corresponds a unique γ in Γ such that Sγ = s.

It should be emphasized that numerous different selections of H, A, W , o, and T can lead

to the same set P(H,A,J ,W,o,T|Z). For example, if M is a nonsingular C by C matrix, then

TM(M−1γ) = Tγ in (33), so that P(H,A,J ,W,o,T|Z) is the same as P(H,A,J ,W,o,TM|Z).

In practice, the matrix T and the offset vector o have decompositions T = T1T2 and

o = T1o2, where T1 is a B by B1 matrix with elements T 1
bb , T2 is a B1 by C matrix with elements′

T 2
bc, and o2 is a vector of dimension B1 with elements o2

b . Thus β = T1β1, where β1 = o2 + T2γ.

In advanced applications, users of the program may need to make explicit use of these matrices

and vectors; however, in typical cases, they are automatically constructed given basic model

specifications. The matrix T1 and the vector β1 involve decompositions based on individual items.

For each positive integer j ≤ J , let Hτj and Hadj , 1 ≤ d ≤ D, be nonnegative integers less than

Hj . If Hτj > 0, let Tτj be an Hj by Hτj matrix. If Hadj > 0, let Tadj be an Hj by Hadj matrix.

9



Let Haj be the sum of the Hadj for 1 ≤ d ≤ D. Let

b1τ (1) = 1, (34)

b1τ (j) = b1τ (j − 1) +Hτ(j J−1), 1 < j ≤ , (35)

b1a(1, 1) = b1τ (J) +HτJ , (36)

b1a(1, j) = b1a(1, j − 1) +Ha(j−1), 1 < j ≤ J, (37)

b1a(d, j) = b1a(d− 1, j) +Ha(d 1)j , 1 < d ≤ D, (38)−

b1ψ = b1a(1, J) +HaJ . (39)

Then T 1
bb has the following value for 0 ≤ h < Hj , 1 ≤ hτj ≤ Hτj , 1 ≤ hadj ≤ Hadj , 1′ ≤ d ≤ D,

1 ≤ j ≤ J :

1. Row h+ 1 and column hτj of Tτj if b = bτ (h, j) and b′ = b1τ (j) + hτj − 1.

2. Row h+ 1 and column hadj of Tadj if b = ba(d, h, j) and b′ = b1a(d, j) + hadj − 1.

3. 1 if b = b′ + bψ(1, 1)− b1ψ and b′ ≥ b1ψ.

4. 0 otherwise.

Let τ j denote the vector with elements τhj for h from 0 to Hj − 1. If Hτj > 0, let β1
τj

denote the vector with elements β1
b for b from b1τ (j) to b1τ (j) +Hτj − 1. Then τ j is Tτjβ

1
τj . If Hτj

is 0, then τ j is the 0 vector of dimension Hj .

Let a1
dj be the Hj-dimensional vector with elements adhj for 0 ≤ h ≤ Hj − 1. If Hadj > 0,

let β1
adj denote the vector with elements β1

b for b from b1a(d, j) to b1a(d, j) +H 1
adj − 1. Then adj is

Tadjβ
1 1
adj . If Hadj is 0, then adj is the 0 vector of dimension Hj .

There are three standard cases considered in the program for Hτj and Hadj . In the

following descriptions, D(j) denotes a subset of the integers 1 to D that represents elements of

Aθi related to item j. For example, in a between-item model (Adams, Wilson, & Wang, 1997),

each D(j) has one element, so that each item response is only related to one skill.

GPC model. The GPC model (Muraki, 1992) for Item j has Gj = Hj , Hτj = Hj − 1, and Tτj

the cumulative matrix with row h and column hτj equal to 0 if h ≤ hτj and equal to 1

otherwise. If d is in D(j), then Hadj = 1 and row h of Tadj has the single element h− 1. If d

is not in D(j), then Hadj = 0. If Gj = Hj = 2, then one has a 2PL model for the item

10



(Birnbaum, 1968). Note that for each h, log[pj(h|ω)/pj(h− 1|ω) is an affine function of Aω

with item intercept τ − τ equal to element b1 1
hj (h 1)j τ (j) + h− 1 of β and with item slope−

(item discrimination) adhj − ad(h 1)j for element d of Aω equal to element b1a(d, 1, j) of β1 if−

d is in D(j) and equal to 0 if d is not in D(j). The fundamental feature here is that the

slopes do not depend on the value of h.

Nominal model. In a nominal model for item j (Bock, 1972), Hτj and Tτj are defined as in the

GPC model. In addition, if skill d is related to the item, then Hadj = Hj − 1 and

Tadj = Tτj . If skill d is not related to the item, then Hadj = 0. This case is the same as the

2PL model if Hj = 2. For each h, log[pj(h|ω)/pj(h− 1|ω) is an affine function of Aω with

item intercept τhj − τ(h 1)j equal to element b1τ (j) + h− − 1 of β1 and with item slope (item

discrimination) a 1
dhj − a 1

d(h for element d of Aω equal to element b (d, 1, j) + h 1 of β−1)j a −

if d is in D(j) and equal to 0 if d is not in D(j).

3PL model. In the 3PL model (Birnbaum, 1968), Gj = 2, Hj = 4, Hτj = 2, 
Tτj =

0 0

1 00 1


1 1

 ,
Hadj = 1, 

Tadj =

01


0


0


if d is in D(j), and Hadj = 0 if d is not in D(j). The


logit log[pj(1|ω)/pj(0|ω)] is an affine

function of Aω with item intercept τ1j − τ0j equal to element b1τ (j) of β1 and with item

slope for element d of Aω equal to element b1a(d, j) of β1 if d is in D(j) and equal to 0 if d is

not in D(j). The logit log[pj(2|ω)/pj(0|ω)], the logit of the guessing probability, is the

constant τ2j − τ0j equal to element b1τ (j) + 1 of β1, and the logit log[pj(3|ω)/pj(0|ω)] is the

sum of the logits log[pj(1|ω)/pj(0|ω)] and log[pj(3|ω)/pj(0|ω)].

For examinee i and item j, the probability pj(1|ω) that the observed response Xij = 1 to

11



item j given that the latent vector ωi = ω in Ω is then

exp(τ2j
pj(1 ω) =

− τ| 0j) 1 exp[τ1j 0j + (a1j − a0
+

− τ j)
′Aω]

, (40)
1 + exp(τ2j − τ0j) 1 + exp(τ2j − τ0j) 1 + exp[τ1j − τ0j + (a1j − a0j)′Aω]

while the probability pj(0|ω) that Xij = 0 given that ωi = ω is then

1 1
pj(0|ω) = . (41)

1 + exp(τ2j − τ0j) 1 + exp[τ1j − τ0j + (a1j − a0j)′Aω]

The guessing parameter is then
exp(τ2j − τ0j)

.
1 + exp(τ2j − τ0j)

The item intercept is τ1j − τ0j , and the item discrimination for skill d is ad1j − ad0j .

In the Parscale program (Muraki, 1991), D = K = 1, A is the 1 by 1 identity matrix, and

each item satisfies either a GPC model or a 3PL model.

The matrix T2 restricts the parameter vector β1. Some restrictions are normally required

to identify parameters. The following procedure applies to most typical cases. Assume that, for

each integer b from 1 to B1, the model assumes that β1
b is a given constant o2

b , assumes that

β1
b = β1

b for some b′ < b for which no restriction is imposed on βb′ , or makes no assumption about′

β1
b . Let C be the number of positive integers b such that no restriction is imposed on β1

b . Let b(1)

be the smallest positive integer b such that no assumption is made concerning β1
b . For any integer

c such that 1 < c ≤ C, let b(c) be the smallest integer b such that b > b(c− 1) and no restriction is

imposed on β1. For 1 ≤ b′ ≤ B1 and 1 ≤ c ≤ C, let T 2 be 1 and o2 1
b b′c b = 0 if β′ b is assumed equal to′

β1 for b(c) ≤ b′. Let T 2
b(c) b′c = 0 otherwise. Let γc = β1 .b(c)

Several cases are commonly encountered. Consider the following examples.

Fixed guessing. In some cases in which a 3PL model is applied to Item j, the probability of

correct guessing is given. For example, it may be the inverse of the number of choices

provided by a multiple-choice item. In such a case, the logit τ2j − τ0j of the guessing

probability is also given. This logit is element b1τ (j) + 1 of β2.

Constant guessing. In some cases in which a 3PL model is applied to several items, it is

assumed that the logit of the guessing probability is the same for all items. If j′ is the

smallest positive integer such that a 3PL model is applied to item j′, then element b1τ (j) + 1

of β1 is assumed equal to element b1τ (j′) + 1 of β1.

One-parameter models. In many cases, it is assumed that, for a given integer d ≤ D,

adhj − ad(h−1)j is constant for 1 ≤ h ≤ Hj − 1 whenever d is in D(j). This assumption is

12



found in the 1PL model in which Hj = Gj = 2 for each item j (Rasch, 1960) and the 2PL

model holds for each item and in the PC model (Masters, 1982) in which Hj = Gj for each

item and each item satisfies a GPC model. In some cases, the added restriction is made that

each difference adhj − ad(h−1)j is 1.

o linear term for the constant. In many cases, the linear parameters ψk1 corresponding to

the constant predictor are assumed 0. In the case of θi with an assumed normal

distribution, this requirement implies that the conditional expectation of θi given Ziu = 0,

u > 1, is the zero vector 0K .

ixed diagonal quadratic terms. In many cases, the quadratic parameters λkk1 are assumed

to be −1/2. If θi is assumed to have a normal distribution, then the assumption made is

that, for 1 ≤ k ≤ K, 1 is the conditional variance of θik given θi′k, i
′ = k, and Ziu = 0,

u > 1. In this case, o2
b = −1/2 for b = b1λ + (k + 2)(k − 1)/2, 1 ≤ k ≤ K.

ixed quadratic terms. In some cases, it is assumed that λkk′u = λkk′1 for u > 1.

ndependence. It is common in the multivariate normal model for θi to have the independence

condition that, for some positive integer k ≤ K, λkk′u = 0 if k′ = k. Thus θik is

conditionally independent of θik′ , k
′ = k, given Zi. This case also applies to models with θi

polytomous if Ω is a Cartesian product of finite and nonempty real sets Ωk, 1 ≤ k ≤ K.

ifactor models. In bifactor models (Gibbons et al., 2007; Gibbons & Hedeker, 1992),

D = K > 1, the θi are assumed to have multivariate normal distributions, and the

independence model applies for each integer k. The matrix A is the identity matrix, and

each D(j) has two elements, one of which is 1. Parameter identification is typically achieved

by the requirement that the assumptions of fixed diagonal terms and no linear constant

both apply.

estricted bifactor models. In restricted bifactor models, a restricted variant on a bifactor

model is employed with fewer parameters. Here K = D + 1 > 2, the θi have a multivariate

normal distribution, and the independence model applies for all k. The matrix A has

elements Adk = 1 for d = 1 or d− 1 = k and all other elements are 0. A between-item model

is assumed for the D(j), 1 ≤ j ≤ J . To identify parameters, one may assume that the model

with no linear term for the constant applies and that λ111 is −1/2.

In one-dimensional applications with D = K = U = 1, D(j) equals {1} for each item j,

nd A is the 1 by 1 identity matrix, it is quite common to have the assumption that θi1 has a
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standard normal distribution. In this case, both the case of no linear term for the constant and

fixed diagonal quadratic terms apply. It follows that o2 1 1
b is 0 for b = B − 1 and −1/2 for b = B .

No γc corresponds to ψ11 or λ111.

In a latent-regression model similar to the model in the National Assessment of Educationa

Progress, each item satisfies a GPC model or a 3PL model, the θi are assumed to be multivariat

normal, U > 1, the model with no linear term for the constant applies, the model for fixed

diagonal terms applies, and the model for fixed quadratic terms applies (Mislevy, Johnson, &

Muraki, 1992).

In models for concurrent calibration for U > 1 disjoint groups, the model for no linear

term for the constant applies, and the model for fixed diagonal terms applies. The Ziu, u > 1, ar

1 for examinee i in group u and 0 otherwise.

In some cases, more general definitions of T2 can be employed to include other common

models. For example, the linear logistic test model can be employed in this fashion (Fischer,

1973). Similarly, general latent-class models can be constructed (Heinen, 1996).

l

e

e

3 The Algorithm

The numerical algorithm used for maximum-marginal-likelihood estimation is a version of

the stabilized Newton–Raphson algorithm (Haberman, 1988; Haberman, von Davier, & Lee, 2008)

in which adaptive quadrature is employed in the multivariate normal case. To avoid trivial cases,

assume that C > 0. Let ` be the weighted log-likelihood function, so that

n

`(γ) = ` (β) =
∑

wi`i(γ), (42)∗
i=1

where the log-likelihood component `i(γ) = `i (β) for examinee i is the logarithm of the∗

probability pi(Xi|Zi) under equations (1) to (33). Note that `i and ` are functions on the space

Γ of possible values of γ, whereas `i and ` are functions on the space B of possible values of β.∗ ∗

The algorithm uses the gradient ∇`i(γ) of `i at γ and the Hessian matrix ∇2`i(γ) of `i at γ. The

gradient of ` at γ is
n

∇`(γ) =
∑

wi∇`i(γ), (43)
i=1

and the Hessian of ` at γ is
n

∇2`(γ) = wi
i=1

∇2`i(γ). (44)
∑
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The basic Newton-Raphson algorithm uses the functions ∇` and ∇2`. In addition, the following

matrix will often be employed (Louis, 1982):

n

Φ(γ) =
∑

wi[∇`i(γ)][∇`i(γ)]′, (45)
i=1

where for C-dimensional vectors u and v with respective elements uc and vc for 1 ≤ c ≤ C, uv′ is

the C by C matrix with row c and column d equal to ucvd, 1 ≤ c ≤ C, 1 ≤ d ≤ C.

A value γ̂ in ΓV is a marginal-maximum-likelihood estimate of γ if `(γ̂) ≥ `(γ) for all

γ in ΓV . In discussion of the algorithm, it is assumed that γ̂ is a marginal-maximum-likelihood

estimate of γ. In the ordinary Newton–Raphson algorithm for the unconstrained case of V = 0,

an initial approximation γ0 to γ̂ is given, and a sequence of approximations γt, t ≥ 1, is generated

by the equation

γ 2
t+1 = γt − [∇ `(γt)]

−1∇`(γt), t ≥ 0. (46)

If ∇2`(γ̂) is negative definite, then a neighborhood O of γ̂ exists such that γt, t ≥ 0, converges to

γ̂ whenever γ0 is in Γ. In addition, if |u| denotes the maximum absolute value of an element of a

C-dimensional vector u, then there exists a real number ∆ > 0 such that, for t sufficiently large,

|γ 2
t+1 − γ̂| < ∆|γt − γ̂| (47)

(Kantorovich & Akilov, 1964, pp. 695–711). The constant ∆ depends on the second and third

differentials of `.

If V > 0, and to any γ in Γ corresponds a γV in ΓV such that `(γ) = `(γV ),

then the Newton–Raphson algorithm remains relevant. For any real constant υ > 0, the

maximum-likelihood estimate γ̂ can be obtained by maximization of

`V (γ) = `(γ)− υ||Sγ − s||2 (48)

for γ in Γ, where, for any V -dimensional vector u with elements uv, 1 ≤ v ≤ V ,

V

||u|| =
∑

u2
v. (49)

v=1

Let a prime be used to denote a matrix transpose. Then `V has gradient

∇`V (γ) = ∇`(γ)− 2υS′(Sγ − s) (50)
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and Hessian

∇2`V (γ) = ∇2`(γ)− 2υS′S. (51)

The ordinary Newton–Raphson algorithm for the constrained case uses an initial approximation

γ0 to γ̂ such that γ0 is in Γ, and a sequence of approximations γt, t ≥ 1, is generated by the

equation

γ 2
t+1 = γt − [∇ `V (γt)]

−1∇`V (γt), t ≥ 0. (52)

If ∇2`V (γ̂) is negative definite, then a neighborhood O of γ̂ exists such that γt, t ≥ 0, converges to

γ̂ whenever γ0 is in O. In addition, there exists a real number ∆ > 0 such that, for t sufficiently

large, (47) holds. The constant ∆ depends on the second and third differentials of `V . Note that

`V and ` have the same third differentials, for they differ only by a quadratic function.

The function `V can also be employed in maximum posterior likelihood in cases in which γ

is identified without use of any linear constraints and S has rank C. In this case, the corresponding

prior for γ is normal with mean (S′S)−1S′s and covariance matrix (2υ)−1(S′S)−1.

In practice, the Newton–Raphson algorithm is not readily used for typical models for

item responses to estimate parameters by maximum marginal likelihood. It is difficult to obtain

initial approximations γ0 that are sufficiently accurate to ensure convergence. As a consequence,

stabilization procedures are required. These procedures can involve replacement of ∇2`(γt) by an

alternative matrix, and they can involve modification of step size. To avoid duplicate discussion,

let ` 2 2
V = ` if V = 0. Thus ∇`V = ∇` and ∇ `V = ∇ `. In addition, let ΦV be Φ if V is 0, and let

ΦV be Φ + 2υS′S if V > 0. The stabilized Newton–Raphson algorithm uses positive constants κ,

τ < 2/(1− τ1), and τ1 < 1/2. Given the initial approximation γ0 to γ̂, the iteration has the form

γt+1 = γt + αtqt t ≤ 0. (53)

The vector qt is [−∇2`V (γt)]
−1∇` 2 2

V (γt) if ∇ `V (γt) is negative definite. If ∇ `V (γt) is not

negative definite and ΦV (γt) is positive definite, then qt is [ΦV (γt)]
−1∇`V (γt). If ∇2`V (γt) is

not negative definite and ΦV (γt) is not positive definite, then qt satisfies the equation

ΦV (γt)qt = ∇`V (γt).

The constraint is imposed that if u is a C-dimensional vector with elements uc, 1 ≤ c ≤ C, if

ΦV (γt)u = 0, if 1 ≤ d ≤ D, ud = 0, and uc = 0 for c > d, then element d of qt is 0 (Haberman,6
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1979, pp. 582–585). The real number αt is always positive. It is chosen so that αt|Tqt| does not

exceed κ and αt ≤ 1. If qt is the zero vector, then αt = 1, γt+1 = γt, and γt is a critical value of

`V . Otherwise, αt must satisfy the constraint that

`V (γt+1)− `V (γt) > τ1αtq
′
t∇`V (γt). (54)

The value of αt is 1 if |Tqt| ≤ 1 and if (54) holds for this choice of αt.

If αt cannot be chosen to be 1, then αt is selected by an iterative algorithm. The initial

value αt0 is the minimum of 1 and κ/|Tqt|. For any integer ν ≥ 0, let αtν > 0 be given, and let

γtν = γt + αtνqt. (55)

If

`V (γtν)− `V (γt) > τ1αtνq
′
t∇`V (γt), (56)

then αt+1 = αtν and γt+1 satisfies (53). Otherwise, αt(ν+1) maximizes the quadratic function

`V (γt)) + αq′t∇`V (γt) + (1/2)α2ctν

over real α ≥ ταtν , where

`(γt)) + αtνq
′
t∇`(γ 2

t) + (1/2)αtνctν = `(γtν). (57)

Thus

ctν = 2α−2
tν [`(γtν)− `(γt)− αtνq′t∇`(γt)], (58)

and

αt(ν+1) = max[ταtν ,−c−th
1q′t∇`(γt)]. (59)

The constraints on τ and τ1 imply that

ταtν ≤ αt(ν+1) < [2/(1− τ1)]αtν < αtν . (60)

Application of Taylor’s theorem shows that a positive ν > 0 exists such that (56) and (55) both

hold.

With the stabilized Newton–Raphson algorithm, if ∇2`V (γ̂) is negative definite, then

there exists a neighborhood Os of γ̂ such that γt, t ≥ 0, converges to γ̂ whenever γ0 is in

Os. In addition, there exists a real number ∆ > 0 such that, for t sufficiently large, (49)
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holds. The constant ∆ is the same constant as in the Newton–Raphson algorithm. In addition,

q = [−∇2` (γ )]−1
t V t ∇`V (γt) and αt = 1 for t sufficiently large. The gain in practice is that the

set Os for the stabilized Newton–Raphson algorithm includes the set of all γ0 in Γ such that

{γ ∈ Γ : `V (γ) ≥ `V (γ0)} is bounded and contains only one element at which the gradient of `V is

the zero vector 0C .

3.1 Formulas for Gradients

Let (1) to (33) hold. The gradient ∇`V (γ) is evaluated from ∇`(γ) as in (50) if V > 0.

Otherwise, ∇`V (γ) is ∇`(γ). For evaluation of ∇`(γ), observe that ∇`(γ) is T′∇` (β), where∗

∇` (β) is the gradient of ` at β and (33) holds. In turn,∗ ∗

n

∇` (β) =
∑

wi∇`i (β), (61)∗ ∗
i=1

where ∇`i (β), 1 ≤ i ≤ n, is the gradient of `i at β. Recall (19) to (32). For ω in Ω, let∗ ∗

log p K
i(Xi ω) + log fθ Z(ω Zi), Ω = R ,

`i (β|ω) =

 | | |
∗  (62)

log pi(Xi|ω) + log pθ|Z(ω|Zi), Ω finite.

Then element b, 1 ≤ b ≤ B, of the gradient ∇`i (β|ω) is `ib (β ω∗ | ). For 1 ≤ b ≤ B, 0∗ ≤ h ≤ Hj ,

1 ≤ j ≤ J , 1 ≤ d ≤ D, 1 ≤ k ≤ K, 1 ≤ k′ ≤ K, 1 ≤ u ≤ U , x = Xij , and z = Zi, χij [pj(h|x,ω)− pY j(h|ω)], b = b(h, j, τ), χij [pj(h|x,ω)− pY j(h|ω)]A′dω, b = b(d, h, j, a),
`ib (β) =  (63)∗  zu[ωk − µk(z)], b = b(k, u, ψ),

zu[ωkωk′ − µkk′2 (z)], b = b(k, k′, u, λ).∗

It follows that ∇` the


i (β) is


conditional expectation of ∇`i (β∗ ∗ |θi) given Xi and Zi. By (6), if Ω

is finite, then

∇`i (β) =
∑

pθ XZi(ω X∗ | | i,Zi)∇`i (β∗ |ω). (64)
ω∈Ω

If Ω is RK , then (8) implies that

∇`i (β) =∗

∫
fθ (|XZi ω|Xi,Zi)∇`i (β∗ |ω)dω. (65)

Computation of ∇`(γ) exploits the relationship

n

∇`(γ) = T′ wi
i=1

∇`i (β). (66)∗
∑
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Similarly, computation of Φ(γ) uses the relationship

Φ(γ) = T′

{∑n
wi

i=1

∇`i (β)[∗ ∇`i (β)]′∗

}
T. (67)

Some reduction in computations can be achieved by noting that `ib (β|ω) is not needed∗

for a positive integer b ≤ B if Tbc is 0 for all positive integers c ≤ C.

Note that in practice, gradient calculations needed for computation of γt+1 from γt for

t ≥ 0 involve substitution of γt for γ in (1) to (19).

3.2 Formulas for Hessian Matrices

Computation of ∇2`V (γ) is similar to computation of ∇`V (γ). The Hessian ∇2`V (γ) is

evaluated from ∇2`(γ) as in (51) if V > 0. Otherwise ∇2` 2
V (γ) equals ∇ `(γ). The Hessian

∇2`i (β) of `i (β) is evaluated by use of the gradient `i (β|ω), the gradient ∇` ),∗ i (β and the∗ ∗ ∗

Hessian ∇2`i (β|ω) of `i (β ω∗ ∗ | ). For 1 ≤ b ≤ B and 1 ≤ b′ ≤ B, let `ibb′ (γ∗ |ω) be row b and

column b′ of ∇2`i (β∗ |ω).

For integers h and h′, let δhh′ be 1 for h = h′ and 0 for h = h′. Let

Πhh′j(ω) = δhh′pj(h|x,ω)− pj(h|x,ω)pj′(h
′|x,ω)− δhh′pY j(h|ω) + pY j(h|x,ω)pY j′(h

′|x,ω) (68)

for 0 ≤ h < Gj , 0 ≤ h′ < Gj , 1 ≤ j ≤ J , and ω in Ω. For 1 ≤ b ≤ B, 1 ≤ b′ ≤ B, 0 ≤ h ≤ Hj ,

1 ≤ j ≤ J , 0 ≤ h′ ≤ Hj′ , 1 ≤ j′ ≤ J , 1 ≤ d ≤ D, 1 ≤ k ≤ K, 1 ≤ k1 ≤ k, 1 ≤ d′ ≤ D, 1 ≤ k′ ≤ K,

1 ≤ k2 ≤ k′, 1 ≤ u ≤ U , 1 ≤ u′ ≤ U , x = Xij , and z = Zi,

χijΠhh′j(ω), b = b(h, j, τ), b′ = b(h′, j, τ), j = j′,

χijΠhh′j(ω)A′d ω, b = b(h, j, τ), b′
 = b(d′, h′

′, j′, a), j = j′,

 χijΠhh′j(ω)A′dω, b = b(d, h, j, a), b′ = b(h′, j′, τ), j = j′, χijΠhh′j(ω)Ad
′ ωAd

′ ω, b = b(d, h, j, a), b′ = b(d′, h′, j′, τ), j = j′,′

`ibb′ (β) =  −zuzu′µkk′2(z), b = b(k, u, ψ), b′ ′∗  = b(k , u′, ψ), (69) −zuzu′µkk2k′3(z), b = b(k, u, ψ), b′ = b(k2, k
′, u′, λ), −zuzu′µk′k1k(z), b = b(k1, k, u, λ), b′ = b(k′, u′, ψ), −zuzu′µk1kk′ 4(z), b = b(k1, k, u, λ), b

k

′ = b(k2, k
′, u, λ),

0, otherwise.

6


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The Hessian matrix ∇2`i (β) is then the sum of the conditional expectation of∗ ∇2`i (β∗ |θi)

given Xi and Zi and the conditional covariance matrix of ∇`i (β θ∗ | i) given Xi and Zi. Let

Ki(β|ω) = ∇2`i (β|ω) + [∇`i (β∗ ∗ |ω)−∇`i (β)][∗ ∇`i (β∗ |ω)−∇`i (β)]′ (70)∗

for ω in Ω. If Ω is finite, then (6) implies that

∇2`i (β) =∗
ω

∑
pθ | β|XZi(ω Xi,Zi)Ki( |ω). (71)

∈Ω

If Ω is RK , then (8) implies that

∇2`i (β) =

∫
fθ XZi(ω|Xi,Z∗ | i)Ki(β|ω)dω. (72)

Computation of ∇2`(γ) exploits the relationship

∇2`(γ) = T′

[∑n
wi

i=1

∇2`i (β)∗

]
T. (73)

As in the case of the gradient, Hessian calculations needed for computation of γt+1 from

γt for t ≥ 0 involve substitution of γt for γ in (1) to (19).

3.3 Quadrature Procedures

Whenever the multivariate normal distribution is used for the latent vector, numerical

quadrature procedures are used to evaluate required integrals. For each examinee i, a finite and

nonempty set Q of quadrature points in RKi is used together with a positive weight function

W K
i(q) defined for each q in Qi. For a finite and nonempty subset Q of R , a positive function W

on Q, and a real function G on RK , define

I (QW G) =

∑
U∑∈QW(U)G(U)

. (74)
( )U∈QW U

If G is a B-dimensional vector function on RK with elements Gb, 1 ≤ b ≤ B, let I ( )QW G be the

B-dimensional vector function with elements I (Gb) for 1 ≤ b ≤ b. Similar conventions can beQW

used for matrix-valued functions. Let

Li(ω) = `i (β∗ |ω) (75)

for K-dimensional vectors ω. One approximates `i (β) by∗

¯̀
i (β) = log[∗ IQi i(exp(Li)]. (76)W

20



Let ∇`i (β|·)) be the function with value ∇`i (β|ω) for ω in Ω. The gradient∗ ∗ ∇`i (β) is∗

approximated by
(exp( )∇̄ i `i (β ))

`
QiWi

i (β) =
I L ∇ ∗ |·

. (77)∗ I i i(exp(Q W Li))

For the Hessian matrix, let

K̄ (β|ω) = ∇2 ) ∇̄[∇ ¯
i `i (β|ω) + `i (β|ω − `i (β)][ ` (β ω) ` (β)]′. (78)∗ ∗ ∗ ∇ i∗ | − ∇ i∗

The Hessian matrix ∇2`i (β) is approximated by∗

2 I i (exp(L ¯
i i)K∇̄ `i (β) =

Q W i(β|·))
. (79)∗ I iWi(exp(Li))Q

3.4 Adaptive Quadrature

The weight functions Wi and sets Qi of quadrature points are permitted to depend on

the examinee i to improve the efficiency of the quadrature procedures in terms of accuracy and

computational speed. Thus quadrature is adaptive. The basic use of adaptive quadrature in

estimation by maximum marginal likelihood has been explored by quite a number of investigators

(e.g., Naylor & Smith, 1982; Haberman, 2006; Schilling & Bock, 2005). In the algorithm under

study, adaptive quadrature is based on the function Li for each examinee i. A K-dimensional

ˆvector θim is employed that approximates the location of the maximum θim of Li (ω) over all∗

K-dimensional vectors ω. One then computes the Hessian matrix ∇2Li(θim) of Li at θim. The

Cholesky decomposition

LiL
′ 2
i = −∇ Li(θim) (80)

is available for a unique K by K matrix Li such that, for 1 ≤ k ≤ K and 1 ≤ k′ ≤ K, row k and

column k′ is 0 if k < k′ and row k and column k is nonnegative (Wilkinson, 1963, pp. 117–120).

If ∇2Li(θim) is negative definite, then row k and column k of Li is positive for 1 ≤ k ≤ K.

If Gj = Hj for each item j, then it follows from standard properties of log-linear models and

exponential families that ∇2Li is a negative definite function and Li is a strictly concave function

(Haberman, 1973).

Let ∇2Li be negative definite. Let Ri be the linear function defined by

Ri(ω) = θim + L−1
i ω (81)
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for K-dimensional vectors ω. If the integral
∫
G exp(Li) is defined for a real function G on RK ,

then ∫
G exp(L ) = |L |−1

i i

∫
G(Ri)) exp[Li(Ri)]. (82)

The right-hand side of (82) has the attraction that exp[Li(Ri(ωi))]/φKV (ωi) is

approximately constant and the determinant of Li is the product of the diagonal elements of Li.

Multivariate cumulants can be used to obtain the more precise result that, for a homogeneous

third-degree polynomial Pi3 on RK , and a positive constant R3i,

|L (R (ω ))− L (θ ) + (K/2) log(2π)− log φ (ω − P (ω )| < R |ω |4i i i i im KV i i3 i 3i i (83)

(McCullagh & Nelder, 1989, pp. 165–167). In addition, G(Ri(ωi)) is approximately constant if

G is differentiable and if the maximum ratio |ω|/|Liω| is small for ω a nonzero K-dimensional

vector. As a consequence, evaluation of the right-hand side of (82) is readily accomplished by

use of quadrature procedures designed for integrals of the form
∫
GφKV . Application of standard

arguments from Bayesian inference to IRT (Holland, 1990) suggest that Pi3 is typically on the

order of the inverse of the square root of the number Ji of items presented to examinee i and R3i

is typically on the order of J 1
i
− .

ˆDetermination of an approximation θim to θi can be performed by the same stabilized

Newton–Raphson algorithm already described for use in approximation of γ̂. In practice, γ is

replaced by γt in all formulas required for computation of γt+1.

In the program, adaptive quadrature is applied in the following fashion. A finite and

nonempty set of quadrature points Q in RK and a positive function W on Q are given. The set

Qi then consists of the vectors Ri(U) for U in Q, and

Wi(Ri(U)) = |Li|−1W(U)/φKV (U) (84)

for U in Q. Typically Q and W are selected so that, for a set S of polynomials on RK ,∫
PφKV = I (QW P), P ∈ S. (85)

3.5 Product Rules

In many cases, the set Q and the function W are constructed by use of product rules. For

each integer k, 1 ≤ k ≤ K, a finite and nonempty real set Tk and a positive real function Yk on Tk
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are given. The set Tk has Qk members. The set Q is the Cartesian product
∏K
k=1 Tk of the Tk,

1 ≤ k ≤ K, so that U is in Q if, and only if, each element Uk of U , 1 ≤ k ≤ K, is in Tk. The set Q

has
∏K
k=1Qk elements. The weight function W on Q is

⊗K
k=1 Yk, so that

W(U) =

K∏
k=1

Yk(Uk). (86)

Properties of IQW are derived from the properties of the ITkYk . If, for 1 ≤ k ≤ K, Gk is a real

function on the real line such that Gkφ is integrable and

ITkYk(Gk) =

∫
Gkφ, (87)

then G =
⊗K

k=1 Gk satisfies

IQW(G) =

∫
GφV K (88)

(Haberman, 1996, chapter 4).

The basic cases of product rules considered in the program are Gauss–Hermite quadrature

and evenly spaced quadrature with normal weights; however, the program can treat other product

rules as well. In addition, the program does consider alternatives to product rules in which Q is a

nonempty proper subset of
∏K
k=1 Tk and a positive real weighting adjustment function A on Q is

employed. The weight function W ′ on Q satisfies

W ′(U) = A(U)W(U) (89)

for U in Q. Multiplication of all A by the same positive constant leads to the same quadrature

procedure. This result is sometimes helpful in data input.

3.6 Gauss–Hermite Quadrature

The most common selection of Q and W is based on Gauss–Hermite quadrature (Davis

& Polonsky, 1965; Hochstrasser, 1965; Ralston, 1965). This approach is well known, especially in

the case of one-dimensional quadrature; however, a number of variations exist in the literature

concerning the exact scaling employed. In addition, many properties related to weak convergence

appear to be little known.

In the Gauss–Hermite quadrature used in the program, integers Qk > 1 are given for

1 ≤ k ≤ K. The set Q is defined by use of Hermite polynomials defined on the real line. For an
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integer Q ≥ 0, the Qth Hermite polynomial is defined so that H0 is the constant function 1 and,

for Q > 0, (−1)QHQφ is the Qth derivative of the standard normal density function φ (Cramér,

1946, p. 133). For U real, H0(U) = 1, H1(U) = U , H2(U) = U2 − 1, and

HQ+1(U) = UHQ(U)−QHQ−1(U) (90)

for Q > 0. For Q even, HQ has the symmetry property that HQ(U) = HQ(−U) for all real U . For

Q odd, HQ has the antisymmetry property that HQ(U) = −HQ(−U) for all real U .

Corresponding to HQ is a set NQ of Q real numbers such that HQ(U) = 0 for a real

number U if, and only if, U is in NQ. The set NQ has the symmetry property that U is in NQ if,

and only if, −U is in NQ.

In addition to use of standard tables (Davis & Polonsky, 1965), a number of numerical

procedures can be employed to find NQ (Golub & Welsch, 1969). Corresponding to NQ is the

weight function VQ on NQ such that

VQ(U) =
Q!

Q2[HQ−1(U)]2
(91)

for U in NQ. The function VQ has the symmetry property that VQ(U) = VQ(−U) for all U in NQ.

If Q = 2, then NQ is the set with elements −1 and 1, and VQ is always 1/2. If Q = 3, then NQ

consists of −31/2, 0, and 31/2, and VQ(U) is 1/6 for U equal −31/2 or 31/2 and 2/3 for U equal to 0.

The set Q for adaptive quadrature is then
∏K
k=1NQk

, and the weight function W satisfies

W =

K∏
k=1

VQk
. (92)

Equation (85) holds if S consists of all polynomial functions P on RK such that, for each

integer k, 1 ≤ k ≤ K, for element k of the argument of the polynomial, each term of P either is of

odd degree or of degree no greater than 2Qk − 1. For example, consider the case of K = 3 and

Qk = 4 for 1 ≤ k ≤ K. Let P satisfy

P(U) = 3U1U9
2U6

3 − 5U9
1U4

2

for U in R3 with elements Uk for 1 ≤ k ≤ 3. Then P is in S.

A classical error formula is available for the one-dimensional case of K = 1. Let G be a real

function on the real line which is 2Q times continuously differentiable. Let the 2Qth derivative of

G be G2Q. Then ∫
Gφ− IQW(G) =

G2Q(U)Q!

2Q)!
(93)
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for some real U . A notable consequence of this formula is that
∫
Gφ ≥ IQW(G) if m is an even

nonnegative integer and G(U) = Um for all real U .

Weak convergence results can be applied to IQW (Rao, 1973, chapter 2). It is helpful

to begin with the case of K = 1. Let G be a measurable real function on the real line that is

continuous almost everywhere with respect to Lebesgue measure. If, for some polynomial function

G∗ on the real line, |G| ≤ G∗, then Gφ has a finite integral and IQW(G) converges to
∫
Gφ as

Q1 approaches ∞ (Haberman, 1996, chapter 4). More generally, (93) can be used to show that

if, for some real function G∗ on the real line, |G| ≤ G∗, G∗ is infinitely differentiable with Qth

derivative GQ, and for some nonnegative integer Q∗, GQ is a nonnegative function for all Q ≥ Q∗,

and G∗φ has a finite integral, then IQW(G) converges to
∫
Gφ as Q1 approaches ∞ (Haberman,

1996, chapter 4). For example, for any real c > 0 and real d < 1/2, this result can be applied if

G∗(U) = c exp(dU2) for U real.

To obtain results concerning weak convergence for K > 1, one uses (87) and (86). Use

of characteristic functions permits the results for K = 1 to be applied to verify that GφKV

has a finite integral and IWQ(G) converges to
∫
GφKV as min1≤k≤K Qk approaches ∞ if G is

a Lebesgue-measurable real function on RK , G is continuous almost everywhere with respect

to Lebesgue measure, and, for some nonnegative continuous real functions G∗k on the real line,

1 ≤ k ≤ K, such that G∗kφ has a finite integral, |G| ≤ ⊗Kk=1G∗k . This result ensures that the

integrations required in the program for adaptive quadrature can be made arbitrarily accurate by

letting all Qk be sufficiently large.

In IRT, the number Qk of quadrature points needed for 1 ≤ k ≤ K for adequate integral

approximation via adaptive quadrature is normally quite small, especially for relatively high

dimension K (Schilling & Bock, 2005). The basis of this result involves use of asymptotic

expansions related to Laplace approximations (de Bruijn, 1970, chapter 4). Results are most

favorable if Gj = Hj for each item j, and it is quite helpful in typical cases if the number Ji of

items presented to an examinee i is large relative to the dimension K. It is common for values of

Qk from 3 to 5 to be adequate for practical work, and Qk = 2 may be satisfactory for tests for

which Ji is large.
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3.7 Normal Weights and Even Spacing

A simple alternative approach to Gauss–Hermite quadrature also relies on integers Qk > 1

defined for 1 ≤ k ≤ K. Corresponding to each integer Q > 1 is a set EQ with Q real members such

that, for some real eQ > 0, EQ consists of the real numbers eQ[q − (Q+ 1])2] for positive integers

q ≤ Q. The function VQ is then defined so that

VQ(U) =
φ(U)∑
U ′∈Ek φ(U)

. (94)

The set Q for adaptive quadrature is the
∏K
k=1 EQk

. The weight function W satisfies

W =
K∏
k=1

VQk
. (95)

Weak convergence results again can be applied to IQW (Rao, 1973, chapter 2). Let eQ

approach 0 and eQQ approach ∞ as Q approaches ∞. If each Qk approaches ∞, then rather

similar arguments to those used for Gauss–Hermite quadrature can be used to demonstrate that

IWQ(G) converges to the Lebesgue integral of GφKV when G is GφKV has a finite integral, G is

continuous almost everywhere, and G/φdKV is bounded for some positive integer d < 1.

The program permits eQ to be specified by the user or to be determined automatically.

In the case of automatic specification, eQ is 2/(Q − 1)1/3. If each Qk is 2 and eQ is selected

automatically, then quadrature with normal weights and even spacing is the same as Gauss–

Hermite quadrature. The choice of eQ is based on an examination of IVQEQ(H2) and IVQEQ(H4) for

this choice for a selection of values of Q. Recall that
∫
Hqφ = 0 for q ≥ 1, and note that symmetry

implies that IVQEQ(Hq) is 0 for q a positive odd integer. Thus IVQEQ(H2) and IVQEQ(H4) should

be near 0 if IVQEQ(G) is to provide good approximations for
∫
Gφ for real functions G such that

Gφ is integrable and G has at least five continuous derivatives. To illustrate the quality of the

approximation in the case of Q = 10, observe that IVQEQ(H2) is about −0.00002 and IVQEQ(H4)

is about −0.0004.

In practice, the option for even spacing is most likely to be employed with a polytomous

latent vector (Haberman et al., 2008).

3.8 Simplex Quadrature

Even with values of Qk of 3 or 4, as the dimension K increases, the set Q for Gauss–Hermite

quadrature or quadrature with normal weights and even spacing becomes quite large, for Q has
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∏K
k=1Qk members. As a consequence, it is appropriate to seek quadrature approaches that use

very few points. Simplex quadrature provides a very simple illustration of a possible approach

that only requires K + 1 quadrature points. Let cK , c real, be the K-dimensional vector with

all elements c. Let IK be the K by K identity matrix. Then let Q be a set of K + 1 vectors of

dimension K such that the following orthonormality conditions hold:

∑
U∈Q
U = 0K (96)

and ∑
U∈Q
UU ′ = IK . (97)

For K = 1 and Q1 = 2, simplex quadrature is the same as Gauss–Hermite quadrature. For K > 1,

the set Q must be selected. The normal selection in the program is based on Helmert contrasts.

The set Q includes Uk, 1 ≤ k ≤ K + 1, where element j of Uk, 1 ≤ j ≤ K, is

Ujk =


{(K + 1)/[j(j + 1)]}1/2, j ≥ k,

−[(K + 1)j/k]1/2, j = k − 1,

0, j < k − 1.

(98)

3.9 Cross-Polytope Quadrature

To define cross-polytope quadrature, let δk, 1 ≤ k ≤ K, be the K-dimensional vector with

element k equal to 1 and other elements 0. Let Q be the set that consists of the 2K vectors K1/2δk

and −K1/2δk for 1 ≤ k ≤ K. Then Q is the set of vertices of a cross-polytope (Coxeter, 1963).

With W equal to the function on Q always equal to (2K)−1, one finds that S in (85) includes all

polynomials on RK of degree no greater than 3. If K = 1, then cross-polytope quadrature is the

same as simplex quadrature.

3.10 Variants of Gauss–Hermite Quadrature

In a variety of cases, a reduced set of quadrature points is used based on Gauss–Hermite

quadrature. For example, one might consider the case of Qk = 3 for 1 ≤ k ≤ K = 3. One may

consider a set Q with 19 rather than 27 points. The elements of Q include the zero vector 03, the

6 vectors 31/2cδk, c equal −1 or 1, 1 ≤ k ≤ 3, and the 12 vectors 31/2(ckδk + cmδm), ck and cm
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each either −1 or 1, 1 ≤ k < m ≤ 3. The function W assigns weight 1/3 to 03, weight 1/18 to

31/2cδk, and weight 1/36 to the remaining 12 vectors in Q. Note that in section 3.5, for Tk = Nk
and Yk = Vk, one may define A(U) so that the function W assigns weight 1/3 to 03, weight 1/18

to 31/2cδk, and weight 1/36 to the remaining 12 vectors in Q. In this manner, S in (85) includes

all polynomials on R3 of degree no greater than 5.

An alternative approach can be based on fractional factorial designs for experiments (Box,

Hunter, & Hunter, 2005). One can select a set Q of K-dimensional vectors with all elements

either −1 or 1. For some positive integer K ′ < K, Q has 2K−K
′

elements, and W is the constant

function on Q with value 2K
′−K . For example, one might have K = 8, K ′ = 1, and Q equal to the

set of K-dimensional vectors U with elements Uk such that |Uk| = 1 for 1 ≤ k ≤ K and such that∑K
k=1 Uk is even. In (85), S includes all polynomials on R8 of degree no greater than 3.

4 Input and Output Specifications

Input for the program consists of a data file which contains the observations and a control

file which follows Fortran 2003 rules for namelist input. The program is run from a command line.

Within a Unix/Linux environment (including MacOS), the command line is opened by opening

a terminal. In Windows, a command prompt is used to obtain a command line. The user is

expected to be able to change directories and perform other basic tasks associated with the basic

commands of an operating system. Owing to weaknesses in memory management in Windows,

program performance is typically much better in a Linux/Unix environment.

The program name is mirt, and piping is normally employed on the command line to

specify a control file. If control.txt is the name of the control file and if the executable file is in

the path used to find commands, then the program is invoked with the following command:

mirt<control.txt

The control file uses namelist input records to specify the data, the model parameters,

the data files, other input files, and output files. Output generally is designed to produce files

with comma-separated values (csv files) readily treated by standard software for spreadsheets. A

graphical user interface to simplify input and output is currently under preparation.

Each namelist input record contains a name of a namelist group and pairs of variable

names and variable values. The record begins with an ampersand and is immediately followed

by the name of the namelist group. One or more blank spaces must follow the name of the
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group. Zero or more pairs of variable names and values follow, and the record is terminated by

a forward slash (/). In each pair of variable names and values, the variable name and value are

separated by an equals sign. A user not very familiar with Fortran namelist input should avoid

use of exclamation points and use of forward slashes not intended to terminate a record. The

order of the pairs of names and values does not matter, and a pair need not appear if the default

variable value is acceptable. It is prudent to surround a character value by apostrophes, although

a pair of quotation marks may also be used. The program terminates if a namelist group is not

successfully read. As indicated in the discussion of the various namelist groups, the program may

also terminate if namelist variables are invalid.

In this section, the primary data employed for illustrative purposes are a language test

in which four skills are tested. For most examples, data from a single test administration are

employed. The test includes 34 dichotomous items that measure listening proficiency, 42 items

that measure reading proficiency, 6 attempts that measure speaking proficiency, and 2 items

that measure writing proficiency. The listening items all have scores 0 or 1. Of the 42 reading

items, 39 are dichotomous items with scores 0 or 2 and 3 are trichotomous items with possible

scores 0, 1, or 2. The original speaking items have 5 possible scores from 0 to 4; however, the

scores are transformed prior to analysis by subtracting 1 from each positive score. The writing

items have original scores of 0 and the integers 2 to 10; however, 1 is subtracted from each score

prior to analysis. Generally the 34 listening items are used to illustrate approaches for a test

with a one-dimensional latent variable and dichotomous responses. The speaking items are used

in some instances to illustrate approaches for a test with a one-dimensional latent variable and

with polytomous responses. The complete test illustrates use of methods for a test with both

dichotomous and polytomous items and with an underlying latent vector of dimension greater

than 1. In many cases, the complete test is used with an underlying latent vector of dimension

4. The data are found in FORM1ANOV.TXT. Data from a different administration of the same

test are employed to illustrate analysis when two groups of examinees are involved. These data

are in form3cg.txt. These data have a slightly different format, for the writing section scores have

already been transformed to the scale from 0 to 9, and there are 41 reading items, of which two

trichotomous items have scores from 0 to 2 and one item has four scores from 0 to 3. This section

example is used with models with a latent vector with two dimensions, one of which corresponds

to all skills except speaking and the other of which corresponds to speaking. The control file
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listening.txt and associated output file listening.csv provide an example of a simple 2PL analysis

with a normal latent variable with mean 0 and variance 1. The control file fourskill.txt with

associated output file fourskill.csv illustrates a simple 2PL analysis with a normal latent vector

for a between-item model.

The following namelist group names are used. They are arranged in the order they appear

in the control file.

• runtitle

• numberunits

• files

• units

• dataspec

• numberrecodes

• recodetable

• paramspec

• dimension

• linearspec

• quadsize

• nquadperdim

• griddata

• quaddim

• quadrature

• allfactorspecs

• factorspecs
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• allskillspecs

• skillspecs

• allitemspecs

• itemspecs

• catspecs

• intspecs

• slopespecs

• predictorname

• designparameters

• designspecs

• constraints

• readgamma

• inputinformation

• printprogress

• output

• eapoutput

• weightedsum

• numberweights

• readweight

Variables in each namelist group are defined in the subsection for that group.
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4.1 runtitle

This namelist group has the following variable:

• title

4.1.1 title

This variable is a character variable with length up to 80 characters. The default value,

‘GPCM 2PL Model with Normal Latent Distribution’, corresponds to the default analysis. In

listening.txt, ‘Listening Test:2PL Model’ is the value of title in the runtitle group. Were no entry

specified for title, then the default title would be used.

4.1.2 Remarks.

Because output is for files with comma-separated values (csv files), it is prudent to avoid

commas, spaces, apostrophes, and quotation marks within the run title. This issue applies to all

names used in the program; however, no error is reported if spaces are included.

4.2 numberunits

This namelist group has the following variable:

• count

4.2.1 count

This variable is an integer from 1 to 90. The default value is 1. It specifies the number

of files employed for program output. In listening.txt, the default value is used, for no value

is specified for count. In contrast, in listening1.txt, count is 9, for 9 separate output files are

specified.

4.3 files

There are count namelist groups, one for each output file. The ith group corresponds to

Fortran unit 9 + i. Corresponding to the namelist group is the following variable:

• filename
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4.3.1 filename

The value of filename is the name of a file. To permit use of paths, this value is a character

variable with up to 256 characters. The default value of filename is ‘output.csv’. If the file

specified cannot be opened, then the program terminates with an error message. Note that one

file should not be assigned to multiple units. Examples of filename specifications can be seen in

listening.txt, where all output is placed in ‘listening.csv’, and listening1.txt, where nine separate

output files are specified.

4.4 units

This namelist group has the following variables to specify Fortran units associated

with specific portions of the output. For each variable, the default value is 10, the unit which

corresponds to the name of the first output file. In listening.txt, this default value is used for all

output; however, output is somewhat more complex in listening1.txt. The portions of the output

correspond to the following variables:

• unitalpha

• uniteap

• uniteapskill

• uniteapwt

• unitgrad

• unitinfo

• unititeration

• unititerationstart

• unitmargin

• unitmarginwtsum

• unitmargin2
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• unitmp

• unitoutdata

• unitparam

• unitparamcov

• unitparamcov complex

• unitparamcov louis

• unitparamcov sandwich

• unitpost

• unitpreditem

• unitprob

• unitrel

• unitrelskill

• unitrelwt

• unittitle

• unitwtitem

4.4.1 unitalpha

The unit for θim and Li. The specification for Li involves a K by K matrix L̄i such that

the element in row k and column k′ < k of the matrix is the element in row k and column k′ of Li

divided by the element in row k′ and column k′ of Li, and the element in row k′ ≤ k and column k

of the matrix is the element in row k and column k′ of Li multiplied by the element in row k′ and

column k′ of Li. This unit is only useful for adaptive quadrature. It can assist in recalculations.

In listening1.txt, unitalpha is not specified and takes its default value of 10. In listeninga.txt, the

unit is 11, which corresponds to listeningalpha.csv.
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4.4.2 uniteap

The unit for the estimated conditional expected (expected a priori [EAP]) value θ̂i

of θi given Xij , j in Ji ∩ J ′ and Zi and the estimated covariance matrix of θi given Xij , j

in Ji ∩ J ′, and Zi for each examinee i, where J ′ is a subset of J that may be equal to J

(Bock & Aitkin, 1981; Haberman & Sinharay, 2010). In listening1.txt, uniteap is 11. The

corresponding file is listeningeap.csv. Because the latent variable has dimension 1 in this example,

and because observations do not have identifiers such as customer numbers, the three columns

consist of a sequence number, an EAP (“Mean Listening”) and an estimated conditional variance

(“Cov Listening Listening”) of the latent variable given the item responses. Note that the

conditional covariance of Listening and Listening shown in the output is obviously the same as the

conditional variance of Listening.

4.4.3 uniteapskill

The unit for the estimated conditional expected value of Aθi given Xij , j in Ji ∩ J ′

and Zi, and the estimated covariance matrix of Aθi given Xij , j in Ji ∩ J ′, and Zi for each

examinee i. In listening1.txt, uniteapskill is not specified and takes its default value of 10. In

this case, no request is ever made for the transformed EAP values, for the dimension of the θi

is 1. In threefacte.txt, transformed EAP values are requested. Here uniteapskill is 11. The

corresponding file is threefacteapskill.csv. In this example, the skills are Listening, Reading,

Speaking, and Writing. To each observation corresponds a sequence number, 4 conditional means,

and 16 conditional covariances.

4.4.4 uniteapwt

The unit for the estimated conditional expected value T̂Si of TSi and conditional

covariance matrix of TSi given Xi and Zi, 1 ≤ i ≤ n, where TSi is the sum
∑

j∈J ′ ISj(Y
′
ij),

ISj , j in J ′, is a specified DS-dimensional vector function on the integers 1 to Hj , and the Y ′ij ,

j in J ′, are random variables such that 1 ≤ Y ′ij ≤ Hj and such that the Y ′ij , j in J ′, and Yi are

conditionally independent given θi and Zi. The conditional expected value of TSi given θi and Zi

is denoted by T̃Si, and T̂Si is the conditional expected value of T̂Si given Xi and Zi. As in (9),

it is assumed that the conditional probability that Y ′ij equals y, 1 ≤ y ≤ Hj , given θi = ω in Ω

and Zi = z in Z is pY j(y|ω) (Haberman & Sinharay, 2010). In listening1.txt, uniteapwt is 19. The
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corresponding file is listeningeapwt.csv. The sum of the item scores for Listening is considered.

The format is the same as in listeningeap.csv; however, the scale of results is quite different, for

the sums are integers from 0 to 34.

4.4.5 unitgrad

The unit for the gradients ∇`i(γ̂) from the observations i. In listening1.txt, unitgrad is 14.

The corresponding file is listeninggrads.csv. To each observation corresponds a sequence number

and the 68 elements of the gradient. Column labels identify the parameter corresponding to the

column, so that “Listening item27 slope” corresponds to the slope parameter for Item 27. This

output is generally only relevant for methods of analysis not incorporated into the program.

4.4.6 unitinfo

The unit used for a summary of information measures used to assess model performance.

The model dimension is C if ∇2`V (γ̂) is negative definite. Otherwise, the model dimension is the

rank of ∇2ΦV (γ̂). The estimated expected log penalty per presented item

PE =
−`(γ̂)∑n
i=1wiJi

(99)

is supplied. The measure is between 0 and the logarithm of the largest number of observed

categories associated with an item, so that the measure cannot exceed log(2) if all items are

dichotomous. This measure has been applied to IRT in the case of equal weights and Ji constant

(Sinharay, Haberman, & Lee, 2011). Without the normalization by number of items, the measure

has been employed for model evaluation outside of IRT (Gilula & Haberman, 1994, 1995, 2001).

The logarithmic penalty function itself has a much longer history in statistics (Mosteller & Wallace,

1964; Savage, 1971). The estimated asymptotic standard error of PE is the same as in the case of

chained log-linear models for multinomial responses (Gilula & Haberman, 1995). In addition, a

version AK of PE based on the Akaike (1974) approach is provided in which the model dimension

is added to the numerator in (99), and a version GH of PE based on the Gilula–Haberman

approach (Gilula & Haberman, 1994, 1995) is provided in which the trace of [−∇2`V (γ̂)]−1Φ(γ̂)

is added to the numerator in (99) if −∇2`V (γ̂) is nonsingular. If the Louis approximation to the

negative Hessian matrix is used in computation of maximum likelihood estimates, the GH and

AK are the same. If complex sampling is used, then the Gilula–Haberman version of PE is also
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calculated with Φ(γ̂) replaced by the estimated covariance matrix Ĉov(∇`(γ)) of ∇`(γ) based

on complex sampling. Complex sampling options are described in section 4.5. In listening1.txt,

unitinfo is not specified and takes its default value of 10. For sample output, see rows 23 to 28 of

listening.csv. The penalty label corresponds to the estimated expected log penalty per presented

item. The label “SE Penalty” corresponds to the standard error of this estimate. This standard

error applies to the Gilula–Haberman and Akaike measures as well. Owing to the large sample

size, all penalty estimates are quite similar and close to 0.5, a value somewhat lower than the

upper bound of log(2) = 0.693. The Gilula–Haberman and Akaike measures always exceed the

basic penalty estimate. As in the example, the Gilula–Haberman and Akaike measures are usually

quite close, especially in large samples. They sometimes differ more noticeably when models fit

badly.

4.4.7 unititeration

The unit for summary information concerning iterations using the full sample. For each

iteration t, the step size αt and the log likelihood `(γt+1) are recorded. As will be discussed under

the namelist record for the group printprogress, this unit is not relevant if iteration information is

sent to standard output. In listening.txt, unititeration is not specified and takes its default value

of 10, so that results are in listening.csv. In listening.csv, the summary is found in rows 18 to 22.

There are three iterations, each step size is 1, and the log-likelihood changes from −162545 to

−162543.

4.4.8 unititerationstart

The unit for summary information concerning initial iterations using a systematic sample

of observations. The output is the same as for unititeration, save for the initial label for the

iteration data. In listening.txt, unititerationstart is not specified and takes its default value of 10,

so that results are in listening.csv. In listening.csv, the summary is found in rows 9 to 17. There

are seven iterations, each step size is 1, and the log-likelihood changes from −17897.1 to −16902.3.

Note that the log-likelihood for initial iterations is much smaller than for the regular iterations

(rows 18 to 22) due to use of a systematic sample of size 1,000 rather than the full sample of 9,617

examinees.
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4.4.9 unitmargin

The unit for summary information concerning marginal distributions of individual item

responses. If requested, output includes observed and fitted frequency distributions, reliability

coefficients of individual item responses. If printmarginres is .TRUE. in output, then adjusted

residuals (or generalized residuals) are also provided. Adjusted residuals are computed throughout

the program in a manner quite similar to the approach in Haberman (2009) and Haberman and

Sinharay (in press). They are constructed to have approximate standard normal distributions

in large samples if the model is satisfied. In listening1.txt, unitmargin is 16, so that results

are in listeningmarg.csv. The columns specify item names, category numbers, item frequencies,

observed category frequencies, standard errors for observed category frequencies, fitted category

frequencies, observed category proportions (or relative frequencies), standard errors of observed

category proportions, fitted category proportions, standard deviations of category indicators,

standard errors of measurement of category indicators, reliabilities of category indicators,

residuals for category frequencies, standard errors for these residuals, residuals for category

proportions, standard errors for these residuals, and the common adjusted residuals for both

category frequencies and category proportions. For example, for Category 1 of Item 1, the item

was presented to all 9,617 examinees and was answered correctly by 6,876 of them. The standard

error of the number answered correctly was about 44. As should be the case for any 2PL model

with no restrictions on item parameters, the fitted category frequency is essentially the same as

the observed category frequency. Any discrepancy simply reflects the fact that the algorithm

terminates after a finite number of iterations, so that γ̂ is not computed exactly. The observed

category proportion is 0.7150, so that 71.5% of examinees provided a correct response to this item.

The standard error associated with this proportion is 0.0046, so that the proportion is relatively

well determined. The standard deviation 0.451 of the category indicator is the estimated standard

deviation of the indicator variable, which is 1 for a correct answer and 0 otherwise. The standard

error of measurement 0.428 for this category indicator (“Std err cat ind”) is the square root of the

estimated conditional variance of the indicator variable given the latent variable. The reliability

0.102 of the category indicator is 1− (0.428/0.451)2. It is the estimated reliability of the category

indicator when regarded as a test with a single item. The residual for the category frequency, the

standard error for the residual, the residual for the category proportion, and the standard error for

this residual are all close to 0, for the observed and fitted quantities are the same, except for errors
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in numerical approximation. As a consequence, the adjusted residual is reported to be 0. For a

case in which the adjusted residuals are more notable, consider writing.txt and writing.csv. Here

a test of writing with two items is considered with 10 categories per item. A quadratic model is

used for logarithms of conditional probabilities of item categories given the latent variable, so that

the estimated expected frequencies in writingmarg.csv may not equal the corresponding observed

values. Indeed, there are clearly substantial discrepancies between observed values and estimated

expected values, and quite large adjusted residuals are found in a number of cases.

4.4.10 unitmarginwtsum

The unit for a summary for observed and fitted frequency distributions for weighted sums

of item scores. Output includes observed and fitted frequency distributions for the marginal

weighted sums specified in weightedsum. If printmarginwtsum is .TRUE. in output, then adjusted

residuals are also provided. In listening1.txt, unitmarginwtsum is 18, so that output is found

in listeningmargwtsum.csv. This output is for the sum of Listening scores for the 34 Listening

items. Summaries are provided for exact weighted sums and for cumulative weighted sums. For

example, consider the entry for the score 10. There are 9,617 examinees for which the score could

be computed. Of these examinees, 125 have a sum score of 10, and the standard error associated

with this frequency is 11.1. On the other had, 376 examinees had a sum score of 10 or less, and

the corresponding standard error of this frequency was 19.0. The estimated expected number of

examinees with a score of 10 is 112.3, while the estimated expected number of examinees with a

score of 10 or less is 403.5. In terms of proportions or relative frequencies, the observed fraction

of examinees with a score of 10 is 0.0130, and the corresponding standard error is 0.0036. The

observed fraction of examinees with a score of 10 or less is 0.0391, and the corresponding standard

error is 0.0020. The estimated probability of a score of 10 is 0.0117, and the estimated probability

of a score of 10 or less is 0.0420. The residual for the number of examinees with a score of 10

is 12.7 = 125 − 112.3, and the associated standard error is 10.2. The residual for the number of

examinees with a score of 10 or less is −27.5, and the corresponding standard error is 10.3. In

terms of proportions, the residual for the fraction of examinees with a score of 10 is 0.00132, and

the corresponding standard error is 0.00102. The residual for the fraction of examinees with a

score of 10 or less is −0.00286, and the corresponding standard error is 0.00107. The resulting

adjusted residuals are 1.25 for the number (or fraction) of examinees with a score of 10 and −2.67
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for the number (or fraction) of examinees with a score of 10 or less. The latter adjusted residual

suggests some problem with model error, although a comparison of observed and fitted values

suggests that the actual discrepancy is not very large.

4.4.11 unitmargin2

The unit for a summary for observed and fitted frequency distributions of pairs of

item responses. If printmargin2res is .TRUE., then adjusted residuals are also provided. In

listening1.txt, unitmargin2 is 17, and the corresponding file is listeningmarg2.csv. The table

format is rather similar to the format for marginal frequencies described in unitmargin. For

example, consider the entry for Item 1, category 1, and Item 2, category 1. Here 9,617 examinees

were presented with both items, and 5,942 answered both correctly. The corresponding standard

error is 47.7. The estimated expected number of examinees with this combination of responses is

5,850. The observed fraction of examinees with a correct response to both items is 0.6179, and

the corresponding standard error is 0.0050. The estimated probability that an examinees answers

both items correctly is 0.6083. For the frequency of the combination of responses, the residual is

92.0, and the corresponding standard error is 16.1. For the proportions of examinees with both

responses correct, the residual is 0.0096, and the corresponding standard error is 0.0017. The

adjusted residual of 5.71 clearly indicates a problem with the model, although the actual size of

the residuals does not indicate a very large discrepancy.

4.4.12 unitmp

The unit for output of θim and the inverse of −∇2Li(θim). This output is used for

maximum a posteriori (MAP) likelihood estimation of the latent vectors θi (Bock & Aitkin, 1981;

Lord, 1980). In listening1.txt, unitmp is 15. The output file is listeningmap.csv. The output is

similar to listeningeap.csv, although in listeningmap.csv, the second column is the MAP estimate

and the third column is the inverse of the negative Hessian matrix at the MAP estimate for the

observation specified in the first column.

4.4.13 unitoutdata

The unit for a basic data summary that shows the number n of observations used from the

input file, the number J of items in the analysis, the number U of predictors, and the filename
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of the input file. In listening.txt, unitoutdata is not specified and takes its default value of 10.

For sample output, see rows 1 to 8 in listening.csv. Here one finds that 9,617 observations are

available, 34 items are present, there is only one predictor, the constant predictor, the data file is

‘FORM1ANOX.TXT’, the total numbers of items presented to examinees is 9617× 34 = 326978,

and the average number of items presented per examinee is 34, for each examinee is presented

with each item.

4.4.14 unitparam

The unit used for a list which, for each integer c from 1 to C includes the name of

parameter γc, the estimated parameter γ̂c, the estimated asymptotic standard deviation σ̂(γ̂c) of

γ̂c derived from the square root of row c and column c of the estimated asymptotic covariance

matrix

Ĉov(γ̂) = [−∇2`V (γ̂)]−1[−∇2`(γ̂)][−∇2`V (γ̂)]−1 (100)

of γ̂, the estimated asymptotic standard deviation σ̂L(γ̂c) of γ̂c derived from the square root of

row c and column c of the Louis (1982) estimate

ĈovL(γ̂) = [ΦV (γ̂)]−1Φ(γ̂)[ΦV (γ̂)]−1 (101)

of the asymptotic covariance matrix of γ̂, and the estimated asymptotic standard deviation σ̂S(γ̂c)

of γ̂c derived from the square root of row c and column c of the sandwich estimated asymptotic

covariance matrix

ĈovS(γ̂) = [−∇2`V (γ̂)]−1Φ(γ̂)[−∇2`V (γ̂)]−1 (102)

obtained without the assumption that the model holds (Haberman, 1989; Huber, 1967; White,

1980). If the Louis approximation is used for the negative Hessian matrix in implementation of

the Newton–Raphson algorithm, then these three estimated asymptotic standard deviations are

all the same. If complex sampling is used, then the estimated asymptotic standard deviation

σ̂C(γ̂c) of γ̂c is derived from the square root of row c and column c of the estimated asymptotic

covariance matrix

ĈovS(γ̂) = [−∇2`V (γ̂)]−1Ĉov(∇`(γ))[−∇2`V (γ̂)]−1. (103)

In listening.txt, unitparam is not specified and takes its default value of 10. An example

of output appears in rows 29 to 98 of listening.csv. In this example, all expressions for standard
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errors yield rather similar results. The third column is σ̂(γ̂c), the fourth column is σ̂L(γ̂c), and the

fifth column is σ̂S(γ̂c). In listeningp.txt, an artificial example of complex sampling is provided in

which primary sampling units are defined in terms of a sequence number. In this case, unitparam

is not specified, so that unit 10 is used for output. The corresponding file is listeningp.csv.

Rows 31 to 100 contain the information on parameter estimates. Because the example is artificial,

the added column for σ̂C(γ̂c) is quite similar to the other columns.

4.4.15 unitparamcov

The unit for the estimated asymptotic covariance matrix Ĉov(γ̂). In listening1.txt,

unitparamcov is 12, and the corresponding file is listeningcov.csv.

4.4.16 unitparamcov complex

The unit for the estimated asymptotic covariance matrix ĈovC(γ̂). In listeningp1.txt,

unitparamcov complex is 11, and the corresponding file is listeningparamcovp.csv.

4.4.17 unitparamcov louis

The unit for the estimated asymptotic covariance matrix ĈovL(γ̂). In listeningcl.txt,

unitparamcov louis is 11, and the corresponding file is listeningcovl.csv.

4.4.18 unitparamcov sandwich

The unit for the estimated asymptotic covariance matrix ĈovS(γ̂). In listeningcs.txt,

unitparamcov sandwich is 11, and the corresponding file is listeningcovs.csv.

4.4.19 unitpost

The unit for the estimates, for each examinee i, of the posterior distribution. For the

case of latent classes, the posterior probability is estimated that θi = ω in Ω given the observed

responses Xi. In the normal case, the posterior probability is estimated that θi is equal to U in

Qi given that θi is in Qi and given the observed responses Xi. In listening1.txt, unitpost is 13,

and the corresponding file is listeningpost.csv. Output includes the observation identification and

pairs of locations and weights. Thus for the first examinee, the first location is −0.286 and the

first weight is 0.00313.
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4.4.20 unitpreditem

The unit for totals and averages of products of category indicators and predictors. The

default value is 10. In Four3C25twog.txt, the value 12 is used, and the corresponding file is

Four3Cn25twogpreditem.csv. In this example, the predictor is an indicator for membership in

Group 2, where examinees are in Group 1 or Group 2. Thus the row for category 1 of Item 1

indicates that the item was presented to 21,238 examinees, and 7,897 of these examinees answered

the item correctly and also belonged to Group 2. The standard error of this number of correct

responses from Group 2 is 70. Under the model used in the example, the estimated expected

number of examinees who responded correctly and were in Group 2 is 8,537. A similar analysis

is expressed in terms of fractions. The fraction of examinees presented the item who answered

correctly and were in Group 2 was 0.3718, and the corresponding standard error is 0.0004. The

corresponding estimated expected fraction under the model is 0.4020. The residual for the number

of examinees with the correct answer and membership in Group 2 is −640, and the corresponding

standard error is 23. For proportions, the residual is −0.0302, and the corresponding standard

error is 0.0011, so that the adjusted residual is −27.3, a very small value for an adjusted residual.

It follows clearly from this adjusted residual and others in the file that failure to account for group

membership induces an appreciable model error.

4.4.21 unitprob

The unit for the estimate for each examinee i of the probability p(Xi). In listening3.txt,

unitprob is 11, which corresponds to listeningprob.csv. Output consists of the observation

identification and the probability. This output can be used outside the program for various model

comparisons of the type described in Gilula and Haberman (2001).

4.4.22 unitrel

The unit for the reliability coefficients for the elements θ̂ik of θ̂i, 1 ≤ k ≤ K (Haberman

& Sinharay, 2010). In listening1.txt, unitrel is not specified and takes its default value of 10,

which corresponds to file listening1.csv. The output is found on rows 99 to 110. The average

of conditional means is the average of the EAP values θ̂i for 1 ≤ i ≤ n. The covariance matrix

of conditional means is the sample covariance matrix (not corrected for bias) of the β̂i. The

conditional covariance matrix is the average of the estimated conditional covariance matrices of θi
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given Xi and Zi for 1 ≤ i ≤ n. The estimated unconditional covariance matrix for θi is the sum of

the conditional covariance matrix of conditional means and the conditional covariance matrix. For

1 ≤ k ≤ K, the reliability coefficient of element θ̂ik of θ̂i is then the ratio of the estimated variance

of θ̂ik to the estimated unconditional variance of element θik of θi. In the example, K = 1. As

should be the case given a model in which the θi1 are standard normal variables, the average EAP

of −0.00174 is quite close to 0, and the estimated conditional variance 0.9987 of θi1 is close to 1.

The reliability estimate for the EAP is 0.867, the ratio of 0.866, the estimated variance of θ̂i1, to

0.9987.

4.4.23 unitrelskill

The unit for the reliability coefficients for the DA elements of Aθ̂i. In threefacte.txt,

unitrelskill is not specified and takes its default value of 10. The corresponding output is in

threefacte.csv in rows 225 to 253. The format is quite similar to the format described in unitrel;

however, results are for the transformed EAP values Aθ̂i. In threefacte.csv, the skills are

Listening, Reading, Speaking, and Writing. The reliability estimates range from 0.917 for Reading

to 0.871 for Writing. The estimated variances of the elements of Aθi exceed 1 due to model

assumptions.

4.4.24 unitrelwt

The unit for the reliability coefficients for the elements of T̂Si. In these reliability

coefficients, variances of elements of T̂Si are compared to variances of elements of T̃Si. In

listening1.txt, unitrelwt is not specified and takes its default value of 10, and results appear in

rows 113 to 126 of listening1.csv. Results are for the sum of the item scores for the 34 Listening

items. The format of results is quite similar to the format described in unitrel, except that the

estimated means and variances of the sums of the item scores are on a much different scale than

are the underlying means and variances of the latent variable.

4.4.25 unittitle

The unit for the title of the analysis. In listening1.txt, unittitle is not specified and takes

its default value of 10. The title appears in the first row of listening1.csv.
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4.4.26 unitwtitem

The unit for totals and averages of products of category indicators and weighted sums. In

listening6.txt, unitwtitem is 11, and the corresponding file is listeningwtitem.csv. The weighted

sum is the sum of the 34 item scores. The format is essentially the same as described in

unitpreditem. Note that the adjusted residuals suggest model error, although the differences

between observed and fitted values are relatively small.

4.5 dataspec

This namelist group has the following variables:

• fileformat

• filename

• nexternal

• nitems

• nobs

• nobsstart

• npred

• complx

• recode

• stratify

• useid

• usepsu

• weight
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4.5.1 fileformat

The format for the data file. The default is ‘*’, which corresponds to list-directed input.

If the value is not the asterisk ‘*’, then the format is in the standard form for a Fortran 2003

format. The order of reading is examinee identification, item responses, predictors that are not

constant, weight, external variables, stratum number, and number of the primary sampling unit

within the stratum. Note that not all variables need be present. For example, with the default

weighting, the weight variable is the constant 1 and is not read. The examinee identification is a

character variable, the item responses are integers, the predictors, weights, and external variables

are floating-point numbers, and the numbers for the stratum and primary sampling unit are

integers. In listening.txt, 34 item responses are read, and they are located from columns 22 to

55. If the data cannot be read by using fileformat, then the program terminates with an error

message. It is important to note that tab coding often permits variables to be read out of order.

For example, in listeningp.txt, the sequence ‘T4,i2’ permits reading of a primary sampling unit

(PSU) code in columns 4 and 5 of the input record after the 34 Listening items have been read.

4.5.2 filename

The name of the data file. The default value is ‘data.txt’. The name may include path

information relative to the directory in which the program was called, so that one may have

filename with values such as ‘data.txt’ or ‘∼\data\data.txt’. The filename can be up to 256

characters long. The program terminates with an error message if the file cannot be opened. In

listening.txt, the filename is ‘FORM1ANOX.TXT’.

4.5.3 nexternal

The number of external variables used in construction of summary statistics and residuals.

The value should be a nonnegative integer, and the default value of 0 corresponds to no external

variables. The value of nexternal is set to 0 if the read value is negative. In listening.txt,

nexternal is not specified, so that no external variables are used. On the other hand, nexternal

is 1 in Four3Cntwoge.txt. In this example, there are two examinee groups, and a comparison

of the observed data and the fitted model examines the association of group membership with

indicators for item categories. Results are in Four3Cntwoge.csv, Four3Cn25twogeeap.csv, and

Four3Cn25twogepreditem.csv.
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4.5.4 nitems

The total number J of items in the analysis. The program terminates with an error

message if a positive integer is not supplied. The default setting is 0, so that this entry must be

specified. In listening.txt, nitems is 34, so that 34 items are read.

4.5.5 nobs

The number n of observations in the data file. The default is 0. A value of 0 or less results

in the number of observations being determined by reading the input data. If nobs is positive

and less than the number of observations in the input file, then only the first nobs observations

are used in the analysis. The program terminates with an error message if n ≤ 2. In listening.txt,

nobs is not specified, so n is determined by reading the input data. On the other hand, in

Four3Cn25twog0.txt, the choice of nobs equal to 10,004 results in an analysis of the data restricted

to Group 1. Results are in Four3Cn25twog0.csv. They may be compared with results for complete

data in Four3Cntwoge.csv.

4.5.6 nobsstart

The number of observations used for initial determination of starting values. The default

value of 1,000 is also used if nobsstart is specified but is not positive. Once the data are read,

nobsstart is the minimum of the input value of nobsstart and the number nobs of observations to

be analyzed. To simplify computations, the observations are selected by systematic sampling.

4.5.7 npred

The number U of predictors. The value 1 is the default and is also used if npred is less

than 1. In listening.txt, npred is not specified, so that U = 1. In Four3Cn25twog.txt, two groups

are present, so that npred is 2.

4.5.8 complx

A logical variable which is .FALSE. if complex sampling is not used and .TRUE. if complex

sampling is used. The default value is .FALSE., and the variable complx is set to .TRUE. if

stratify is .TRUE., if usepsu is .TRUE., or if weight is .TRUE. and .TRUE. is also the read value

of complx. In Four3Cn25twog1c.txt, .TRUE. is the value of complx; however, this selection has no
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practical effect, as is evident by examination of Four3Cn25twog1c.csv. Note that the results for

standard errors for complex sampling are the same as those for sandwich estimation of standard

errors.

4.5.9 recode

A logical variable which is only .TRUE. if some recoding of item responses is required.

The value .FALSE. is the default. In speaking.txt, recode is .TRUE., so that recoding is employed.

4.5.10 stratify

A logical variable which is .FALSE., the default, if stratified sampling is not used and

.TRUE. if sampling is stratified. In listenings.txt and in listeningps.txt, .TRUE. is the value of

stratify. Results appear in listeningps.csv.

4.5.11 useid

A logical variable which is .TRUE. if examinee identifications are used in output that

includes results for individual examinees and .FALSE., the default, otherwise. The examinee

identification, if present, is a character variable with length no greater than 16. When examinee

identification is not provided, a sequence number is used instead in output files for individual

examinees. For example, this practice is seen in listeningeap.csv.

4.5.12 usepsu

A logical variable which is .FALSE., the default, if multistage sampling is not used and

.TRUE. if multistage sampling is used. In listeningp.txt, .TRUE. is the value of usepsu. This

specification affects the values of the estimated asymptotic standard deviations in listeningp.csv

reported for complex sampling (Fuller, 2009, pp. 64–68).

4.5.13 weight

A logical variable which is .FALSE., the default, if examinee weights are all 1 and are

not to be read. If weight is .TRUE., then the weight variable is read during data input. An

error message results if any values of the weight variable are negative. In Four3Cn25twog1.txt,

.TRUE. is the value of weight. Because the weight variable is 0 or 1, the practical effect is to
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confine analysis to Group 2. Results in Four3Cn25twog1.csv may be compared with those in

Four3Cn25twoge.csv to illustrate the effects on parameter estimates of confining attention to

Group 2. Note that the results for standard errors for complex sampling are the same as those for

sandwich estimation of standard errors.

4.6 numberrecodes

If recode is .TRUE. in the namelist group dataspec, then the namelist group numberrecodes

is read. This namelist group has the following single variable:

• numbercodes

4.6.1 numbercodes

The variable numbercodes is an integer array with nitems elements. Element j of

numbercodes is the number of values of item j which require recoding. Thus this element must

be a nonnegative integer. The default value is 0, and any negative value is replaced by 0. If

some element of numbercodes is positive, then a namelist input record for the group recodetable

is required for each item for which the corresponding element of numbercodes is positive. The

records are ordered by increasing item number. In speaking.txt, there are four recodes for each of

the six items.

4.7 recodetable

The group recodetable contains the following variable:

• recode tab

4.7.1 recode tab

The variable recode tab is a two-dimensional integer array with two rows and with a

number of columns equal to the corresponding element of numbercodes. For each column, the first

row is a value of the item that is to be changed to the value in the second row. For example, in

speaking.txt, each item is recoded so that code 0 remains 0 but each code from 1 to 4 is reduced

by 1.
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4.8 paramspec

This namelist group specifies the basic parameters for the numerical algorithm for

computation of maximum-likelihood estimates. The following variable names are used:

• maxit

• maxita

• nr

• twostages

• changemin

• kappa

• maxdalpha

• tau

• tol

• tola

• tolres

• tolsing

These specifications are often not modified at all, as is the case in listening.txt.

4.8.1 maxit

The maximum value of t for each stage of iterations. The variable is an integer, and the

default value is 50. A choice of maxit of 0 or less results in no iterations. This selection can

sometimes be relevant when basic computations have already been performed but some additional

output is desired.

4.8.2 maxita

The maximum number of iterations for approximation of the location of the maximum

posterior density of θi given Xi and Zi. The variable is an integer. If maxita is 0 or less, then

quadrature is not adaptive. The default is 10.
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4.8.3 nr

The logical variable that indicates whether the stabilized Newton–Raphson algorithm is

used. If the indicator has its default value of .TRUE., then the customary stabilized Newton–

Raphson algorithm is used. If the indicator is .FALSE., then in (53), qt is [ΦV (γt)]
−1∇`V (γt) even

if [−∇2`V (γt)] is positive definite. This modification is similar to use of the Fisher (1925) scoring

algorithm rather than the Newton–Raphson algorithm in evaluation of maximum-likelihood

estimates. The motivation involves reduction in the computations per iteration; however, the

number of iterations needed to achieve satisfactory convergence is typically increased. This option

is most attractive when the number of items is very large, say, more than 100, or the number

of quadrature points is large. The option prevents some analysis of effects of specification error

on asymptotic variances and covariances. One comparison can be obtained with fourskill.tex

and fourskilll.tex. In the second case, iterations were completed in about one-sixth of the time

required in the first case. For comparison of results, see fourskill.csv and fourskilll.csv. Note that

the numerical results are slightly different, but the differences have relatively little impact.

4.8.4 twostages

Normally there are two stages to computation of the maximum-likelihood estimates. In

the first stage, a subsample of nobsstart observations is used to obtain an approximation to

maximum-likelihood estimates for the full sample. In the second stage, computations for the full

sample begin with the approximations from the first stage. If twostages is .FALSE., then the first

stage is omitted. Otherwise, the first stage is not omitted. In the default case, .TRUE. is the value

of twostages. In listeningst.txt, twostages is .FALSE. because the final results of listening.csv are

used as input, so that the initial stage serves no purpose.

4.8.5 changemin

In (56), the value of τ1. The default value of 0.0625 is used if the read value of changemin

is not positive or is at least 1/2. The variable is real.

4.8.6 kappa

The maximum permitted value of αt|Tqt|. The default value 2.0 is used if the read value

of kappa is not positive. The variable is real.
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4.8.7 maxdalpha

In adaptive quadrature, the maximum permitted change during iterations with the full

data in the elements of the approximation to the location of the maximum of the conditional

density of θi given Xi and Zi. The variable is real. The default value 3.0 of maxdalpha is used if

the read value is not positive.

4.8.8 tau

For a regular iteration t, the smallest permitted ratio of αt(ν+1)/αtν for ν ≥ 0. The variable

is real. The default value 0.1 is used if the read value of tau is not positive or is at least 1.

4.8.9 tol

The convergence criterion for iterations. Iterations terminate once `V (γt+1)− `V (γt) is less

than tol times `V (γt). The variable is real. The default value 0.00001 is used whenever the input

value of tol is not positive. In listeningacc.txt, tol is set to 10−8, and the quadrature specification

in quadsize uses 10 points rather than the default of 5 points. Results are in listeningacc.csv. The

difference between results in listening.csv obtained with default settings is clearly quite small.

4.8.10 tola

For regular iterations, the convergence criterion for approximation of the location of the

maximum of the posterior density of θi given Xi and Zi. This criterion is only relevant for the

case in which a model is used in which θi has a multivariate normal distribution. The search stops

for examinee i and iteration t once the change of Li is less than tola. The variable is real, and the

default value of 0.0001 is used if the read value of tola is not positive.

4.8.11 tolres

Tolerance for adjusted residuals (Haberman, 2009). Due to approximations errors

encountered in use of iterative algorithms, adjusted residuals are not meaningful if the

denominator used in their calculation is very small. If the estimated variance of a residual is less

than tolres times the estimated variance of the corresponding observation or if the estimated

variance of the observation is 0, then the adjusted residual is reported to be 0. The default value

0.01 is used if the input value of tolres is not positive.
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4.8.12 tolsing

The criterion for −∇2`V (γt) to be regarded as positive definite at regular iteration t ≥ 0.

The constant tolsing is real. If tolsing is not positive, then the default value 0.000000001 is

used. The criterion for positive definiteness is that a Cholesky decomposition of −∇2`(γt) can

be computed and that, for each positive integer c no greater than C, the square of row c and

column c of the decomposition is greater than row c and column c of −∇2`(γt). This criterion is

also applied to ΦV (γt).

4.9 dimension

This namelist group specifies the dimensions K and D and provides information concerning

A. The group contains the following variables:

• dimlatin

• dimlatout

• custom

4.9.1 dimlatin

The dimension K of the latent vectors θi. The variable is an integer. Any read value less

than 1 is changed to 1, and the default value is 1. Thus the default value is used in listening1.txt,

but the value 4 is used in fourskill.txt.

4.9.2 dimlatout

The dimension D of the transformed latent vectors Aθi. The variable is an integer. Any

read value less than 1 is changed to 1, and the default value is 1. As in the examples for dimlatin,

the default value is used in listening1.txt, but the value 4 is used in fourskill.txt.

4.9.3 custom

A logical variable with .FALSE. as its default value. The variable is .TRUE. if, and only if,

the matrix A does not assume its default value. In the default case, for 1 ≤ d ≤ D and 1 ≤ k ≤ K,

Row d and Column k of A is 1 if, and only if, k = d+K −D, D < K and k ≤ K −D, or D > K
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and d ≤ D −K. Thus for K = D, A is the identity matrix. The default identity matrix applies

in listening1.txt and fourskill.txt. In the restricted bifactor model in fourskillbi.txt, A has the

default value for K = 5 and D = 4. All elements in the first column of A are one. The last four

columns of A form the identity matrix.

4.10 linearspec

If custom of dimension is .TRUE., then the next namelist record is for the group linearspec

with the following variable:

• lin tran

4.10.1 lin tran

The variable lin tran is a real D by K array with the same default specifications as A has

in dimension. For instance, in threefact.txt, an analysis is conducted with three factors and four

skills. The general factor applies equally to all skills. The productive factor contrasts speaking

and writing against listening and reading. The oral factor contrasts listening and speaking against

reading and writing.

4.11 quadsize

This namelist provides the basic specification of quadrature points. The following variables

are used:

• dimsize

• nquad

• cross

• equalpoints

• even

• fullgrid

• gausshermite
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• grid

• normal

• simplex

• pspread

4.11.1 dimsize

This integer variable provides the number Qk of quadrature points for each k from 1 to

K if a grid is used and the value Qk is constant for 1 ≤ k ≤ K. This number is reduced to

30 if Gauss–Hermite quadrature is used and the input record has dimsize greater than 30. The

default value is 5, and the default value is used if the read value is less than 2. For example, in

fourskill.txt, the choice of dimsize equals 3 implies that each Qk is 3 for k from 1 to 4.

4.11.2 nquad

This integer variable is the number Q of quadrature points. The default value is 0; however,

in simplex quadrature, nquad is set to K + 1 no matter what the namelist record contains, while

in cross-polytope quadrature, nquad is set to 2K no matter what the namelist record contains. In

the case of a grid, nquad is set to the product Q∗ of the number Qk of quadrature points in each

dimension k for 1 ≤ k ≤ K if a full grid is specified or if the read value of nquad is less than 2 or

greater than Q∗. If a grid is not used and neither simplex nor cross-polytope quadrature is used,

then nquad must be an integer greater than 1. If this condition on nquad is not satisfied, then the

program terminates with an error message. The file threefact19.txt provides an example in which

nquad is set to 19 as in section 3.10.

4.11.3 cross

This logical variable has default value .FALSE., and the value is .TRUE. if, and only if,

cross-polytope quadrature is used. This choice is considered in fourskillcr.txt. One may compare

the corresponding results in fourskillcr.csv to those in fourskill.csv. It appears that in this

example, there is some appreciable loss in use of the cross-polytope approach.
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4.11.4 equalpoints

This logical variable has a default value of .TRUE., and is .TRUE. if, and only if, all Qk

are equal. An example with this variable .FALSE. is provided in fourskillmew.txt for a polytomous

latent vector with fewer values for the writing factor than for the other factors. Results are in

fourskillmew.csv.

4.11.5 even

This logical variable, which has a default value of .FALSE., is .TRUE. if quadrature

points are based on a grid and if evenly spaced quadrature points are used. The variable is

.FALSE. otherwise. If a grid is not used, then .FALSE. becomes the value of even no matter

how this variable was specified in the namelist group. The use of even=.TRUE. is illustrated in

fourskillme.txt, which is a polytomous analogue of fourskill.txt with four points per dimension.

For results, see fourskillme.csv. Note that in terms of estimated expected penalty per item, the

polytomous model used here performs a bit less well than does the multivariate normal model of

fourskill.csv; however, differences are relatively small.

4.11.6 fullgrid

This logical variable, which has a default value of .TRUE., is .TRUE. if, and only if, a full

grid is used, so that quadrature rules are defined as in section 3.5. In threefact19.txt, .FALSE. is

the value of fullgrid, so that the quadrature points of section 3.10 can be used. Results are in

threefact19.csv. They may be compared with results in threefact.csv, where a full grid was used.

Differences in estimates, log-likelihoods, and information measures are small but not negligible.

4.11.7 gausshermite

This logical variable, which has a default value .TRUE., is .FALSE. if Gauss–Hermite

quadrature is not used and .TRUE. otherwise. Whatever value is read in the namelist input, the

variable is set to .FALSE. if .FALSE. is the value of grid or if .TRUE. is the value of even.

4.11.8 grid

This logical variable, which has default value .TRUE., is .TRUE. if, and only if, quadrature

points are selected from the possible quadrature points associated with a product rule (section 3.5).
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For consistency, grid is set to .FALSE. if .TRUE. is the value of either cross or simplex.

4.11.9 normal

This logical variable, which has default value of .TRUE., is .TRUE. if the latent vectors

have normal distributions. Otherwise, latent vectors are polytomous and have values determined

by the quadrature points used. For example, normal is .FALSE. in the polytomous analogue

fourskillm.txt to fourskill.txt. Results found in fourskillm.csv are similar but a bit less satisfactory

than the corresponding normal results in fourskill.csv. Note the modest increase in the estimated

expected log penalty per item and in the corresponding Akaike and Gilula–Haberman measures.

4.11.10 simplex

This logical variable, which has default value .FALSE., is .TRUE. only if simplex

quadrature is used. The indicator is set to .FALSE. if cross-polytope quadrature is specified by

cross. This option is used in fourskillsi.txt. Results are in fourskillsi.csv. They are appreciably

different than results in fourskill.csv, although they are remarkably similar given that simplex

quadrature only involves 5 quadrature points rather than the 81 used in fourskill.csv.

4.11.11 pspread

This real variable determines the range of the quadrature points for even spacing. The

range defined by pspread is used if the variable is positive. Otherwise, the range is determined by

the program. For an example with pspread specified, see fourskillme.txt. The specification of 4.5

together with the use of dimsize equal to 4 leads to points at −2.25, −0.75, 0.75, and 2.25.

4.12 nquadperdim

If grid is .TRUE. and if equalpoints is .FALSE. in quadsize, then the Qk, 1 ≤ k ≤ K, are

obtained from nquadperdim. This namelist group includes the following variable:

• Q

4.12.1 Q

The variable Q is an integer array with values Qk, 1 ≤ k ≤ K. Any read value of Qk

less than 2 is changed to the default value of 5. If Gauss–Hermite quadrature is used, then any
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read value of Qk greater than 30 is changed to 30. This namelist appears in fourskillmew.txt,

where Qk = 4 for k < 4 and Q4 = 3. Results in fourskillmew.csv are quite similar to those in

fourskillme.csv obtained with Qk = 4 for 1 ≤ k ≤ 4.

4.13 griddata

This namelist group is read if fullgrid is .FALSE. and grid is .TRUE. in quadsize. An

example is threefact19.txt. The following variables are used:

• coords

• cw

4.13.1 coords

The variable is an integer array with K rows and Q columns. Note that K is dimlatin in

dimension and Q is nquad in quadsize. Row k and column q is ikq for 1 ≤ k ≤ K and 1 ≤ q ≤ Q.

Specifications are based on an ordering of the sets Tk of section 3.5 that specify possible values

of element k of a quadrature vector. Let Tk consist of the real numbers Mik, 1 ≤ i ≤ Qk, where

Mik, 1 ≤ i ≤ Qk is increasing in i. The set Q is determined by Q index vectors iq of dimension

K, 1 ≤ q ≤ Q. Element k of iq is ikq, and Q contains the vectors Uq, 1 ≤ q ≤ Q, where element

k of Uq is Ukq = Mikqk for 1 ≤ k ≤ K. The integer array coords of dimension K by Q has row

k and column q equal to ikq. The default values of iq, 1 ≤ q ≤ Q, satisfy the constraint that i1

is the K-dimensional array with all elements 1. For 1 ≤ q < Q, iq+1 is obtained by iq by the

rule that if k(q) is the smallest positive integer with ik(q)q < Qk, then ik(q+1) = 1 for k < k(q),

ik(q)(q+1) = ik(q)q + 1, and ik(q+1) = ikq for k > k(q). The program stops with an error message

if any read ikq is not positive or is greater than Qk. In threefact19.txt, coords is defined as in

section 3.10.

4.13.2 cw

The real array cw contains the Q elements Aq, 1 ≤ q ≤ Q. The default value of Aq is 1.

The program stops with an error message if any read A(Uq) is not positive. In threefact19.txt,

values from section 3.10 have been multiplied by 36 to simplify input.
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4.14 quaddim

If grid is .TRUE. but both even and gausshermite are .FALSE., then the namelist group

quaddim is used to define Mik and Yk(Mik) are read for 1 ≤ i ≤ Qk, 1 ≤ k ≤ K. For 1 ≤ k ≤ K,

the namelist group quaddim is read. An example with evenly weighted and evenly spaced points

is found in listeninge.txt, where a polytomous latent variable is used. Results in listeninge1.csv

are rather similar to those in listening.csv. The following variables are in this namelist group:

• points

• weights

4.14.1 points

This real array of dimension Qk contains Mik, 1 ≤ i ≤ Qk. Default values for Mik are

qik = ck[(2i − Qk − 1)/2, where ck = {12/[(Qk − 1)(Qk + 1)]}1/2. In listeninge.txt, seven points

are evenly spaced from −1.5 to 1.5.

4.14.2 weights

This real array of dimension Qk contains Yk(Mik) for 1 ≤ i ≤ Qk. Default values of

Yk(Mik) are 1. The default selection is used in listeninge1.txt.

The default definitions result in Q−1
k

∑Qk
i=1 q

2
ik = 1, so that (85) holds if S consists of all

polynomial functions P on RK such that, for each integer k, 1 ≤ k ≤ K, and for element k of the

argument of the polynomial, each term of P either is of odd degree or of degree no greater than 2.

4.15 quadrature

The namelist group quadrature is read if in quadsize, .FALSE. is the common value of

cross, grid, and simplex. The group depends on the number Q of quadrature points specified by

nquad and the dimension K specified by dimlatin. The following variables are in this group:

• vecpoints

• weights
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4.15.1 vecpoints

The two-way real array vecpoints has dimension K by Q. If Q has members Mq with

elements Mkq, 1 ≤ k ≤ K, 1 ≤ q ≤ Q, then row k and column q of vecpoints is Mkq. The

default value of each element of vecpoints is 0. An illustration is provided in threeskill.txt, which

considers a model for the Listening, Reading, and Speaking skills. Here there are 12 quadrature

points, so that nquad is 12. In vecpoints, quadrature points ckδk + cmδm are specified, where

|ck| = |cm| = (3/2)1/2 and 1 ≤ k < m ≤ K = 3. As evident from weights, points are evenly

weighted. This example is similar to the example in section 3.10, but (85) holds for S consisting of

polynomials with terms with the degree of each element no greater than 3. Results in threeskill.csv

may be compared with results in threeskill5.csv for the default quadrature. Results are similar,

but differences are not negligible.

In listeningu.txt, a somewhat different case is considered. The set Ω of possible values of

θi consists of the pairs (−1, 0), (0, 0), and (0, 1), and the 1 by 2 matrix A has both elements 1.

As a result, Aθi has a single element θi+ = θi1 + θi2 with possible values −1, 0, and 1. Clearly

there is a one-to-one correspondence between θi∗ and θi, so that the model specifications in

allfactorspecs lead in effect to a 2PL model for Listening with a polytomous latent variable θi+

with values −1, 0, and 1. Results are in listeningu.csv. Note that, in terms of the information

measures PE, GH, and AK, they are relatively similar to those in listening.csv for the 2PL model

with a standard normal distribution for the latent variable. The scaling of parameters is not the

same, so that estimated item parameters are somewhat different. The two linear parameters are

logarithms of ratios of probabilities. The first ratio is P (θi+ = 0)/P (θi+ = −1). The second ratio

is P (θi+ = 1)/P (θi+ = 0). Knowledge of the two linear parameters determines the distribution of

θi+.

4.15.2 weights

The real array weights has dimension Q. Element q of weights is W(Mq). The default

value of each element of weights is 1. This default value is used in threeskill.txt and listeningu.txt.

In listeningbinw.txt, a nontrivial array weights is employed. In this example, which involves a

special case of a restricted bifactor model, the Mkq, 1 ≤ k ≤ K = 7, 1 ≤ q ≤ Q = 1000, q odd,

are computer-generated pseudo-random numbers with independent standard normal distributions,

and Mk(q+1) = −Mkq. The weights are obtained by an adjustment by minimum discriminant
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information (Haberman, 1984) to ensure that (85) holds for S including all polynomials P on the

space R7 of seven-dimensional vectors such that, for each integer k, 1 ≤ k ≤ 7, and for element k

of the argument of the polynomial, each term of P has odd degree or degree less than 4. Results

in listeningbinw.csv are fairly close to those in listeningbi.csv obtained with Gauss–Hermite

quadrature for Qk = 3 for 1 ≤ k ≤ 7. It should be noted that this example is relatively difficult

for adaptive quadrature due to use of item sets with only five or six members. The weighting in

listeningbinw.txt is quite important. The use of even weights and 1,000 sets of normal random

numbers in listeningbin.txt is somewhat less successful for computation of parameter estimates, as

is evident by comparison of listeningbin.csv, listeningbinw.csv, and listeningbi.csv. The basic issue

is that in listeningbi.txt, (85) does not hold even for polynomials P of degree no greater than 2.

4.16 allfactorspecs

The namelist group allfactorspecs provides factor specifications that apply to all elements

θik of the latent vector θi of person i. The following variables are in this group:

• factor specs

• fix diag

• fixquad

• independence

• nolin

• noquad

4.16.1 factor specs

If factor specs is .TRUE., then individual factor information is read with the namelist

group factorspecs for each integer k from 1 to K. If factor specs is .FALSE., the default value,

then no individual factor information is read, and the factor names are ‘Factork’ for 1 ≤ k ≤ K.

In listening.txt, the only setting of allfactorspecs that is not the default value is factor specs. This

setting is used to name the factor in factorspecs.
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4.16.2 fix diag

In (12), the λkk1 are −1/2 if fix diag is .TRUE., the default value, and this constraint is

not imposed if .FALSE. is the value of fix diag. In the case of a normal distribution for the latent

vectors, λkk1 implies that 1 is the conditional variance of θik given θik′ , k
′ 6= k, and the predictors

Ziu = δu1, 1 ≤ u ≤ U . Thus, in the normal case, θik has variance 1 if K = 1 and U = 1, while λ121

is the correlation coefficient of θ1i and θ2i if K = 2 and U = 1. A somewhat nontrivial use of

fix diag equals .FALSE. is found in fourskillbi.txt in the case of a restricted bifactor model. In this

example, this selection of fix diag is made because it applies to all but one of the K = 5 elements

of θi. A related but different case is considered in listeningbinw.txt, where a restricted bifactor

model is employed to treat item sets. The variances associated with the item sets are assumed

equal but not necessarily the same as the variance for the Listening factor.

4.16.3 fixquad

If the logical variable fixquad is .TRUE., its default value, then λkk′u = 0 for u > 1.

Thus, in the normal case, the conditional covariance matrix of the θi given Zi is constant

for all examinees i. If fixquad is .FALSE., then λkk′u is not assumed to be 0 for u > 1. In

Four3Cn25twogq.txt, fixquad is .FALSE., so that the means and covariance matrices of the θi

both depend on the group to which the examinee belongs. The results in Four3Cn25twogq.csv

suggest that the gain in model fit is quite limited relative to the results in Four3Cn25twog.csv, in

which the covariance matrix of the θi is not affected by group membership. The added estimates

of the λkk′2 do appear to be nonzero; however, they are quite small, and the changes in information

measures are also quite small.

4.16.4 independence

If the logical variable independence is .TRUE., then λkk′u = 0 for k 6= k′ and 1 ≤ u ≤ U ,

so that, conditional on the predictors Zi, the θik, 1 ≤ k ≤ K, are independent. If independence is

.FALSE., its default value, then the elements θik, 1 ≤ k ≤ K, are not conditionally independent

given the Zi. In the restricted bifactor model in fourskillbi.txt, .TRUE. is the value of

independence.
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4.16.5 nolin

If the logical variable nolin is .TRUE., its default value, then ψk1 = 0 for 1 ≤ k ≤ K. In

the normal case, this condition implies that the conditional expectation of each θik is 0 given

that Ziu = δu1 for 1 ≤ u ≤ U . If nolin is .FALSE., then the ψk1 are not set to 0 for 1 ≤ k ≤ K.

This case arises in the constrained case of a 2PL model in listeningc.txt. In the normal case,

nolin equals .FALSE. corresponds to a mean of θi that need not be 0K . Thus, in listeningc.txt,

the mean of the latent variable is not set to 0. Instead, linear constraints are imposed on item

parameters. In listeningu.txt, nolin equals .FALSE. corresponds to the use of the linear parameters

discussed in vecpoints.

4.16.6 noquad

If the logical variable noquad is .TRUE., then the λkku are all 0. If noquad is .FALSE., its

default value, then λkku need not be 0. This condition cannot apply in the normal case, but it can

be employed in the polytomous case for the construction of quite general models. In listeningu.txt,

the use of noquad equals .TRUE. permits use of the linear parameters discussed in vecpoints to

define the distribution of θi+.

4.17 factorspecs

If the logical variable factorspecs is .TRUE. in allfactorspecs, then individual factor

specifications are provided by the K namelist records with group name factorspecs. The kth

namelist record corresponds to factor k, 1 ≤ k ≤ K. Default values are taken from allfactorspecs

when variable names are common to the namelist record factorspecs and the namelist record

allfactorspecs. The following variables are in the namelist group:

• factor name

• fix diag

• independence

4.17.1 factor name

The character variable factor name is the name of the factor. The name can contain up to

16 characters. In accordance with standard Fortran practice, the name should be enclosed by a
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pair of apostrophes or a pair of quotation marks. The default value ‘Factork’ is used if no name is

specified. For a simple example, see listening.txt, where ‘Listening’ is the name of the one factor.

In fourskillbi.txt, factor names apply to a general factor and to four factors for specific skills.

4.17.2 fix diag

If the logical variable fix diag is .TRUE., its default value, then λkk1 is −1/2. Otherwise

λkk1 is not fixed. This feature is used in threefact4.txt to establish a general factor with a

fixed variance and productive and written factors with unknown variances. Another use is in

listeningbinw.txt, where the variances for the item sets are fixed but not the variance associated

with Listening.

4.17.3 independence

If the logical variable independence is .TRUE., then λkk′u = 0 for k′ 6= k and 1 ≤ u ≤ U ,

so that θik is conditionally independent given θik′ , k
′ 6= k, and Zi.

4.18 allskillspecs

General specifications for the elements of the skill latent vector Aθi are provided by the

namelist group allskillspecs. This group includes the following variables:

• rasch model

• rasch slope 1

• repeat names

• skill specs

4.18.1 rasch model

The logical variable rasch model, which has default value .FALSE., determines whether a

1PL or PC model is used. If rasch model is .TRUE., then adhj − ad(h−1)j is constant over skills d,

categories h, and items j such that skill d in D(j) applies to item j. For a simple case with

rasch model equal .TRUE., see listeningr.txt and listeningr.csv.
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4.18.2 rasch slope 1

The logical variable rasch slope 1, which has default value .FALSE., determines whether

the slope parameter associated with a skill is 1 under a 1PL model or PC model. If rasch slope 1

is .TRUE., then adhj − ad(h−1)j is 1 for each skill d, category h from 1 to Hj − 1, and item j for

which skill d in D(j) applies to item j. If rasch slope 1 is .TRUE., then .TRUE. is also the value

of rasch model. An example with rasch slope 1 equal .TRUE. is found in listeningr1.txt. Output

is in listeningr1.csv. As in this example, rasch slope 1 equals .TRUE. is usually associated with

fix diag equals .FALSE. in allfactorspecs. Note that the information measures and item intercepts

are the same in listeningr.csv and listeningr1.csv and the square of the estimated common item

discrimination 1.152 in listeningr.csv corresponds to minus the inverse of 2 times the quadratic

parameter −0.3775 in listeningr1.csv.

4.18.3 repeat names

The logical variable repeat names, which has default value .FALSE. if D 6= K and default

value .TRUE. if D = K, determines if skill names are derived from factor names. If repeat names

is .TRUE., then the name of skill d is set to the name of Factor d for 1 ≤ d ≤ min(D,K). If

repeat names is .FALSE. and 1 ≤ d ≤ K or repeat names is .TRUE., D > K, and K < d ≤ D,

then skill d has default name ‘Skilld’. For example, in listening.txt, allskillspecs does not specify

repeat names, so that the default setting is used. Thus the one skill has the name ‘Listening’ that

corresponds to the one factor name.

4.18.4 skill specs

The logical variable skill specs, which has default value .FALSE., determines if individual

specifications are provided for each skill. If skill specs is .TRUE., then a namelist record for the

group skillspecs is provided for each of the D elements of Aθi. The value .TRUE. is used in

fourskill.txt due to the use of the Rasch model for one skill out of four.

4.19 skillspecs

If skill specs in the namelist group allskillspecs is .TRUE., then the control file must

contain D namelist records for the group skillspecs. Record d, 1 ≤ d ≤ D, corresponds to element

d of Aθi. Each namelist group skillspecs includes the following variables:
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• skill name

• rasch model

• rasch slope 1

4.19.1 skill name

This character variable provides the name of the skill for element d of Aθi. The name can

contain up to 16 characters. In accordance with standard Fortran practice, the name should be

enclosed by a pair of apostrophes or a pair of quotation marks. The default value is the value

determined in allskillspecs. In fourskillbi.txt, the four skills correspond to the last four factors

rather than the first four factors, so that their names are separately listed.

4.19.2 rasch model

This logical variable is .TRUE. if, and only if, adhj − ad(h−1)j is assumed constant for

skill d in D(j) for integers h from 1 to Hj − 1. The default value is the value of rasch model

in allskillspecs. This option is used in fourskill.txt for the Writing skill due to the existence of

only two items associated with this skill. Note that in fourskill.csv, only one slope parameter is

associated with the two Writing items.

4.19.3 rasch slope 1

This logical variable is .TRUE. if, and only if, adhj − ad(h−1)j is 1 for skill d in D(j)

for integers h from 1 to Hj − 1. If rasch slope 1 is .TRUE., then .TRUE. is also the value of

rasch model. The default value is the value of rasch slope 1 in allskillspecs.

4.20 allitemspecs

General item specifications are provided by the namelist group allitemspecs. This group

includes the following variables:

• int dim

• num choices

• num cat
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• num cat obs

• slope dim

• between item

• cat map

• constguess

• fixguess

• guessing

• item specs

• nommod

• special item int

• special item slope

• set guess

4.20.1 int dim

The integer variable int dim is the default number of parameters used to define item

intercepts. If guessing is .TRUE., then int dim is 2. If guessing is .FALSE., then the default value

of int dim is one less than num cat. In addition, if guessing is .FALSE., then int dim is set to 0

for a read value of int dim is negative, and int dim is set to one less than num cat if int dim is at

least num cat. In writing.txt, int dim is 2, for a quadratic model is employed for the logarithm of

the conditional probability given the latent variable that an item response has a specified value.

4.20.2 num choices

The integer variable num choices is the default number of multiple-choice categories for an

item j. The variable is 0, its default value, or negative if the default number of multiple-choice

items is not known or if the number of possible responses is not finite. In listeninggf.txt, which

treats a 3PL model with a fixed guessing parameter, the value 4 is used. This choice leads to a
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guessing probability of 1/4. As evident from PE AK, and GH in listeninggf.csv and listening.csv,

this choice of a fixed guessing parameter leads to a less satisfactory description of the data than

does the simple 2PL model.

4.20.3 num cat

The integer variable num cat is the default number Hj of underlying item categories

for each item j. If guessing is .FALSE. and num cat is unspecified or any integer less than

num cat obs, then num cat is num cat obs. Note that num cat obs is at least 2. If guessing is

.TRUE. and if num cat obs is 2, then num cat is 4.

4.20.4 num cat obs

The integer variable num cat obs is the default number Gj of observed item categories for

each item j. If num cat obs is unspecified or less than 2, then num cat obs is 2. For example, in

speaking.txt, num cat obs is 4.

4.20.5 slope dim

The integer array slope dim has D elements. For 1 ≤ d ≤ D, element d is the default

number of slope parameters for each item for skill d. If element d is less than 0, then it is replaced

by 0. If element d is greater than one less than num cat, then it is replaced by one less than

num cat. The default value is 1 for each element of slope dim.

4.20.6 between item

The logical variable between item is .TRUE., its default value, if a between-item model is

used. The variable between item is .FALSE. if a between-item model is not used. In the bifactor

model in fourskillubi.txt, .FALSE. is the value of between item.

4.20.7 cat map

The logical variable cat map is .TRUE. if the default values of the Hxj do not satisfy

Hxj = x for 1 ≤ x ≤ Gj − 1. Otherwise, cat map is .FALSE., its default value. If num cat obs and

num cat are the same or if guessing is .TRUE., then .FALSE. is the value of cat map.
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4.20.8 constguess

The logical variable constguess is .TRUE. if, and only if, a constant guessing parameter

is used for all items associated with a 3PL model for a dichotomous item. The default value

is .TRUE.; however, constguess is set to .FALSE. if fixguess is .TRUE., fixguess in itemspecs

is .TRUE. for some item j, or if guessing is .FALSE. and .FALSE. is the value of guessing in

itemspecs for each item j. In listeningggg.txt, a general 3PL model is defined, so that .FALSE.

is the value of constguess. As evident from listeningggg.csv, this selection leads to substantial

numerical problems and very poorly identified estimates. In listeningg.txt, the default value of

constguess is used, and results in listeningg.csv are far more satisfactory.

4.20.9 fixguess

The logical variable fixguess is .TRUE. if a fixed guessing parameter is associated with a

3PL model for a dichotomous response. The variable is .FALSE., its default value, if the guessing

parameter is not fixed or if .FALSE. is the value of guessing. This option is used in listeninggf.txt

with num choices equal to 4.

4.20.10 guessing

The logical variable guessing is .TRUE. if a 3PL model is used for dichotomous responses.

The variable is .FALSE., its default value, otherwise. In listeningg.txt, guessing is .TRUE. and

constguess is not specified, so that a 3PL model is applied to each item, and a constant guessing

parameter is used. Results are in listeningg.csv.

4.20.11 item specs

The logical variable item specs is .TRUE. if individual item specifications are provided in

itemspecs for each item j. If item specs is .FALSE., its default value, then no individual item

specifications are obtained, and the item name of item j is set to ‘Itemj’. If between item is

.TRUE. and if D > 1 (dimlatout exceeds 1 in dimension), then .TRUE. is the value of item specs.

In addition, .TRUE. is the value of item specs if .TRUE. is the value of cat map, special item int,

or special item slope. In listening.txt, the default value of item specs is used, so that individual

item specifications are not read. In fourskill.txt, individual item specifications are required.
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4.20.12 nommod

The logical variable nommod is .TRUE. if the default item specification for each item is a

nominal model. The variable is .FALSE., its default value, if a nominal model is not specified for

each item. For an illustration, see speakingm.txt and speakingm.csv.

4.20.13 special item int

If special item int is .TRUE., then a nonstandard parameterization is used for the item

intercept. Thus the standard parameter definitions for a GPC model, nominal model, or 3PL

model do not apply to the item. The indicator is .FALSE. if int dim is 0. This option is used in

writing.txt.

4.20.14 special item slope

If special item slope is .TRUE., then a nonstandard parameterization is used for the item

slopes. If each element of slope dim is 0, then .FALSE. is the value of special item slope. In

writingsl.txt, .TRUE. is the value of special item slope. An attempt is made to analyze with the

original scores of 0 and the integers 2 to 10. As evident from writingsl.csv, this attempt does not

appear to have improved results relative to writing.csv.

4.20.15 set guess

The real variable set guess is the standard guessing parameter τ2j − τ0j for each item j

for which a 3PL is used. The value used for this guessing parameter is fixguess .TRUE., and the

value is used as a starting value in iterations if fixguess is .FALSE. but .TRUE. is the value of

guessing. If num choices is greater than 1 and set guess is not specified, then set guess is minus the

logarithm of 1 less than num choices. This choice corresponds to guessing without any knowledge

at all. If num choices is not positive and set guess is not specified, then set guess is set to −1.

4.21 itemspecs

If item specs is .TRUE. in allitemspecs, then a namelist record with group name itemspecs

is read for each item from 1 to J . For each item, except for the variables item name and skill num,

interpretations and default values are from the allitemspecs group; however, the values are now
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specific to the item. The following variables are used in the record for the namelist group for

item j:

• item name

• cat map

• int dim

• num choices

• num cat

• num cat obs

• skill num

• slope dim

• between item

• fixguess

• guessing

• nommod

• special item int

• special item slope

• set guess

4.21.1 item name

The item name is a character variable specified by item name. The name must have no

more than 16 characters. The default value is ‘Itemj’ for the jth item.
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4.21.2 cat map

The logical variable cat map is .TRUE. if a special category mapping is required for the

jth item. The variable is .FALSE. if no such mapping is required. The default value is the value

of cat map in allitemspecs. The variable is set to .FALSE. if num cat obs is the same as num cat,

so that Gj = Hj . The default category mapping has Hxj = x for 0 ≤ x < Hj .

4.21.3 int dim

The integer variable int dim has default value Gj − 1 for item j unless int dim in

allitemspecs is not one less than the specified value of num cat in allitemspecs. In this latter

case, the default value of int dim is the value of int dim specified in allitemspecs. For example,

in threefact.txt, int dim assumes its default value for all items except for those associated with

Speaking (skill num=3) and Writing (skill num=4). For the 34 Listening items (skill num=1),

num cat obs and num cat are unspecified, so that the default value 2 is used for the number

Gj = Hj of underlying categories and the default value of 1 = 2− 1 is used for int dim. For 39 of

the 42 Reading items (skill num=2), num cat obs and num cat are unspecified, so that the default

value 2 is used for the number Gj of underlying categories and the default value of 1 = 2 − 1

is used for int dim. For 3 Reading items, num cat obs is 3 and num cat is unspecified, so that

Gj = Hj = 3 and int dim is set to 3− 1 = 2. In the case of the six Speaking items and two Writing

items, int dim is specified to be 2. If int dim is specified to be negative, then the default value of

int dim is used. If guessing is .TRUE. and num cat obs is 2, then int dim is set to 2.

4.21.4 num choices

The integer variable num choices is only relevant if a 3PL model is employed for item j. If

num choices is positive, then num choices is the number of choices for item j. For example, this

value is 4 if item j is a multiple-choice item with four choices. The default value of num choices is

provided by num choices in allitemspecs.

4.21.5 num cat

The integer variable num cat is the number Gj of underlying categories for item j. The

default is the value of num cat in allitemspecs, and any value less than 2 is changed to 2. The

value of num cat is changed to num cat obs if the namelist input and the default values otherwise
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result in num cat obs exceeding num cat. If guessing is .TRUE. and num cat obs is 2, then

num cat is set to 4. Note that if guessing is .TRUE. in allitemspecs and guessing is .FALSE. in

itemspecs, then num cat typically needs to be explicitly specified when it is not 4.

4.21.6 num cat obs

The integer variable num cat obs is the number Hj of observed categories for item j. The

default is the value of num cat obs in allitemspecs, and any value less than 2 is changed to 2.

In fourskill.txt, num cat obs is 3 for three Reading items (skill num=2), num cat obs is 4 for six

Speaking items (skill num=3), and num cat obs is 10 for two Writing items (skill num=4).

4.21.7 skill num

The integer variable skill num provides the skill number associated with item j if only one

skill is associated with the item. The default value is 1. If skill num has a read value less than

1, then the value is changed to 1, while the value is changed to D if skill num has a read value

greater than the number D of skills. In fourskill.txt, skill name is 1 for 34 Listening items, 2 for

42 Reading items, 3 for 6 Speaking items, and 4 for two Writing items.

4.21.8 slope dim

The integer array slope dim has D elements. Element d, 1 ≤ d ≤ D, provides the

dimensions of the parameterization for the slope parameters adhj , 0 ≤ h ≤ Hj − 1, for item j.

The default value is provided by slope dim in allitemspecs. If the input record has an element of

slope dim less than 0, then the element is changed to 0. If the input record has an element of

slope dim greater than Gj − 1 or if nommod is .TRUE., then the element is changed to Gj − 1.

If between item is .TRUE., then element d of slope dim is changed to 0 whenever d is unequal

to skill num. In fourskillubi.txt, slope dim is set for each item to produce a slope parameter for

the general skill and a slope parameter for the specific skill. Results are in fourskillubi.csv. They

may be compared to results in fourskillbi.csv for the restricted bifactor model. The statistics PE,

AK, and GH indicate that the improvement in data description from the unrestricted model is

somewhat limited in this case.
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4.21.9 between item

The logical variable between item is defined as in allitemspecs in the sense that only one

skill applies to item j. The default value is the value of between item in allitemspecs.

4.21.10 fixguess

The logical variable fixguess is .TRUE. if a 3PL model is used for item j with a fixed

guessing parameter. Otherwise, .FALSE. is the value of fixguess. The default value of fixguess is

the value of fixguess in allitemspecs. The variable fixguess is set to .FALSE. if .FALSE. is the

value of guessing.

4.21.11 guessing

The logical variable guessing is .TRUE. if a 3PL model is used for item j. Otherwise,

.FALSE. is the value of guessing. The default value of guessing is the value of guessing in

allitemspecs. The variable fixguess is set to .FALSE. if .FALSE. is the value of guessing, if

num cat obs is greater than 2, or if .TRUE. is the value of nommod.

4.21.12 nommod

The logical variable nommod is .TRUE. if a nominal model is used for item j. Otherwise,

.FALSE. is the value of nommod. The default value of nommod is the value of nommod in

allitemspecs. The variable fixguess is set to .FALSE. if .FALSE. is the value of guessing, if

num cat obs is greater than 2, or if .TRUE. is the value of nommod.

4.21.13 special item int

The logical variable special item int is .TRUE. if a special definition of the parameterization

is required for the item intercepts τhj , 0 ≤ h ≤ Hj − 1. Otherwise, .FALSE. is the value of

special item int. The default value is the value of special item int in allitemspecs. The value of

special item int is .TRUE. for Speaking and Writing items in threefact.txt.

4.21.14 special item slope

The logical variable special item slope is .TRUE. if a special definition of the

parameterization is required for the item slopes adhj , 1 ≤ d ≤ D, 0 ≤ h ≤ Hj − 1. Otherwise,
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.FALSE. is the value of special item slope. The default value is the value of special item slope in

allitemspecs. In Four1Am81.txt, special item slope is .TRUE. for the last two items, where the

actual item scores are 0, 2, 3, 4, 5, 6, 7, 8, 9, and 10.

4.21.15 set guess

The real variable set guess is the guessing parameter τ2j − τ0j for item j if a 3PL is used.

The default value is the value of set guess in allitemspecs. The value is used for this guessing

parameter if fixguess is .TRUE., and the value is used as a starting value in iterations if fixguess

is .FALSE. but .TRUE. is the value of guessing. If num choices is greater than 1, set guess is not

specified, and set guess is not specified in allitemspecs, then set guess is minus the logarithm of 1

less than num choices.

Additional item specifications are read if, for any item, .TRUE. is the value of cat map,

special item int, or special item slope. Each record for item j is read before any record for item j′

is read for j′ > j.

4.22 catspecs

If cat map is .TRUE., then the namelist record is read for group catspecs. This group

includes the following variable:

• cat array

4.22.1 cat array

The real array cat array has size Hj − 1. The values of cat array are the Hxj ,

1 ≤ x ≤ Hj − 1. The default value for element x of cat array is x.

4.23 intspecs

If special item int is .TRUE., then the namelist group intspecs is read. The following

variable is in this group:

• int array
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4.23.1 int array

The real array int array has dimension Gj by int dim. This array specifies T1
τj . The

default mapping corresponds to the customary mapping for a GPC model or nominal model if no

guessing parameter is used and corresponds to the 3PL parameter if the guessing parameter is

used. This option is employed in threefact.txt for intercepts for Speaking and Writing.

4.24 slopespecs

If special item slope is .TRUE., then the namelist record for the group slopespecs is read

for 1 ≤ d ≤ D for any integer d such that element d of slope dim is positive. The group has the

following variable:

• slope array

4.24.1 slope array

The variable slope array is a two-dimensional real array. The first dimension is Gj and the

second dimension is element d of slope dim. The array defines T2
ad. In Four1Am81.txt, int array

and slope array are selected to reflect linear and quadratic terms based on the actual item scores

of 0, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Results are in Four1Am81.csv.

4.25 predictorname

The namelist group predictorname is used to specify names of predictors. The group

includes the following variable:

• pred name

4.25.1 pred name

This variable is an array of character variables, each of length 16 characters. The length

is the sum of npred and nexternal. The initial elements of the array correspond to predictors in

the model. The last elements are external predictors not used in the model. The default name for

the initial predictor name is ‘Constant’, and, for either npred greater than 1 or nexternal positive,

the default name of predictor u is ‘Predictor u− 1’. For any example, see Four3Cn25twog.txt and

Four3Cn25twog.csv, where a model for two groups is used.
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4.26 designparameters

The namelist group designparameters provides alternative parameterizations for the

parameter vector γ. The following variables are in this namelist group:

• constdim

• dimdesign

• proport

• specialtrans

4.26.1 constdim

The integer variable constdim is the number V of linear constraints on γ. The default

value is 0, and any negative value is changed to 0. In listeningc.txt, constdim is 2, for constraints

are imposed on the sum of the item discriminations and the sum of the item slopes.

4.26.2 dimdesign

The integer variable dimdesign is the value of the dimension C of γ. If not specified, C is

the value computed from the standard model calculations. Processing stops unless dimdesign is

positive. For a very simple example, consider speakingn.txt and speakingn.csv. Here the actual

model considered is that the six Speaking responses are independently and identically distributed

random variables. For such a model, only three independent parameters are needed, so that

dimdesign is 3.

4.26.3 proport

The logical variable proport is .TRUE., its default value, if the quadratic constraint

matrix is proportional to the sample size. This variable is only relevant if dimdesign is positive.

In listeningggcc.txt and listeningggcc.csv, this variable is set to .FALSE. to employ maximum

posterior likelihood in which each parameter γc, 1 ≤ c ≤ C = 102, has an independent prior

normal distribution with mean 0 and variance 0.5. Here the γc parameters include 34 item

intercepts, 34 logits of item guessing parameters, and 34 item discriminations.
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4.26.4 specialtrans

If this logical variable is .TRUE., then custom parameter names and custom values of T2

and o2 are read. The default value of .FALSE. results in use of customary parameter names and

values of T2 and o2. In speakingn.txt, .TRUE. is the value of specialtrans, for a special linear

model must be constructed for the parameters in the GPC model.

4.27 designspecs

If specialtrans is .TRUE., then the namelist group designspecs specifies the special design

to be used. The following variables are in designspecs:

• param name

• offsettran

• transition

4.27.1 param name

The character variable param name can have up to 64 characters. In speakingn.txt, the

parameter names represent the common ratios log[P (Xij = k + 1)/P (Xij = k)], 1 ≤ j ≤ 6, for k

from 0 to 2.

4.27.2 offsettran

The real array offsettran has dimension C and is equal to o in (33). In speakingn.txt,

offsettran is just an array of 26 elements, each of which is 0.

4.27.3 transition

The two-dimensional real array transition has dimension B by C. Note that the array is

read in standard Fortran order, so that rows vary faster than columns. In speakingn.txt, transition

is a 26 by 3 array with all elements 0 or 1. In column k, values of 1 correspond to the common

differences τkj − τ(k−1)j , 1 ≤ j ≤ 6.
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4.28 constraints

If in designparameters, constdim is positive, then linear constraints are specified by the

namelist group constraints. The following variables are in the group:

• const mat

• const vec

4.28.1 const mat

The variable const mat is a real array with row dimension C and column dimension

constdim. The default value of each element of const mat is 0 if the row and column are different

and 1 if the row and column are the same. The array provides the transpose S′ of the matrix

S of section 2.5. In listeningc.txt, constdim is 2 in designparameters and fix diag and nolin in

allfactorspecs are .FALSE., so that C = 70. The choice of S′ corresponds to linear constraints on

the sums
∑34

j=1 γj and
∑68

j=35 γj , where γj = τ1j − τ0j and γ34+j = a11j − a10j for 1 ≤ j ≤ 34.

4.28.2 const vec

The real array const vec is the array with size constdim that is the vector s in section 2.5.

The default element of const vec is 0. For example, in listeningc.txt, const vec is the real array

with elements 0 and 34, so that the average value of τ1j − τ0j is 0 and the average value of

a11j − a10j is 1. Results are found in listeningc.csv.

4.29 readgamma

The namelist group readgamma specifies initial values γ0 for the computation of estimated

parameter vector γ̂. The single variable in the group is the following:

• gammas

4.29.1 gammas

The real array gammas of C elements provides starting values for computation of γ̂.

Element c of gammas is the starting value for γ̂c. If gammas is unspecified, then the program

produces its own crude starting values. For example, these default starting values are used in

79

listeningc.txt
listeningc.txt
listeningc.csv


listening.txt. In listeningst.txt, the estimates from listening.csv are used as input. Naturally,

results in listeningst.csv are very similar to those in listening.csv.

4.30 inputinformation

If the model employed assumes that θi is normally distributed, so that normal is .TRUE.

in quadsize, then the namelist group inputinformation is used to specify initial values for θim and

Li for each observation i. The following variables are included in this namelist group:

• fileformat

• filename

• readalpha

An example of use of this namelist group can be seen in listeningb.txt, which uses output

from listeninga.txt. In listening.txt, one has a typical case in which default values are used for this

namelist group.

4.30.1 fileformat

This character variable specifies the file format. The variable has up to 256 characters.

List-directed input is used if ‘*’, the default value, is the value of fileformat. Each record includes

the K elements of θim and the K by K array L̄i. In listeningb.txt, this variable is ‘*’, so that

input is list directed.

4.30.2 filename

This character variable has up to 256 characters, and ‘alpha.txt’ is its default value. The

value is ‘listeningalpha.csv’ in listeningb.txt.

4.30.3 readalpha

This logical variable with default value .FALSE. is true if, and only if, θim and L̄i are to

be read for each observation number i. The specification for Li involves a K by K matrix L̄i such

that the element in row k and column k′ < k of the matrix is the element in row k and column k′

of Li divided by the element in row k′ and column k′ of Li and the element in row k′ ≤ k and
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column k of the matrix is the element in row k and column k′ of Li multiplied by the element in

row k′ and column k′ of Li. The default initial value for each θim is the K-dimensional vector

with all elements 0 and the default initial value of Li and L̄i is the K by K identity matrix. In

listeningb.txt, .TRUE. is the value of the variable. Obviously, results in listeninga.csv are quite

similar to those in listeningb.csv.

4.31 printprogress

The namelist group printprogress specifies printing of iteration results. The group includes

the following logical variables:

• printprogstart

• printprogstartstd

• printprog

• printprogstd

A typical example with all default settings is found in listening.txt. The resulting iteration

summaries can be found in listening.csv. For each stage, the summary includes the iteration

number, the number of steps required within the iteration, and the log-likelihood at the end of the

iteration. The summary can be used to indicate convergence problems or unusually slow speed of

computation, an important feature in complex models for large data files.

4.31.1 printprogstart

This variable is .TRUE., its default value, if iteration progress for the preliminary stage is

to be printed to a file. If only one stage exists, then this variable is ignored.

4.31.2 printprogstartstd

This variable is .TRUE., its default value, if iteration progress for the preliminary stage

is to be printed to standard output. If only one stage exists, then this variable is ignored. Note

that iteration progress can be sent both to a file and to standard output. This option is helpful

for monitoring program progress.
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4.31.3 printprog

This variable is .TRUE., its default value, if iteration progress for the main stage is to be

printed to a file.

4.31.4 printprogstd

This variable is .TRUE., its default value, if iteration progress for the main stage is to be

printed to standard output.

4.32 output

Basic output specifications are provided by the namelist group output. The variables in

the group are all logical variables in which a value .TRUE. implies printing the desired output

and .FALSE. implies not printing. When requested, adjusted residuals are provided via a slight

variation of a procedure developed for one-dimensional latent vectors (Haberman, 2009). Output

files have comma-separated values. Examples appear in the discussion of units. The following

variables are used:

• printalpha

• printeap

• printeapskill

• printeapwt

• printent

• printgrad

• printmargin

• printmarginres

• printmarginwtsum

• printmarginwtsumres

• printmargin2
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• printmargin2res

• printmp

• printparam

• printparamcov

• printparamcov complex

• printparamcov louis

• printparamcov sandwich

• printpost

• printprob

• printpreditem

• printpredtitemres

• printrel

• printrelskill

• printrelwt

• printwtitem

• printwtitemres

4.32.1 printalpha

If the logical variable printalpha is .TRUE., then the Fortran unit specified by unitalpha

in units is used to store comma-separated values for θim and Li that have the format used for

input from filename of inputinformation. For example, in listeninga.txt, the output is sent to

listeningalpha.csv. This output is read in listeningb.txt. If printalpha is .FALSE., its default

value, then values of θim and Li are not stored in an output file.
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4.32.2 printeap

If the logical variable printeap is .TRUE., then EAP vectors and corresponding conditional

covariance matrices for the underlying latent vectors θi are provided in comma-separated format.

The output unit is specified by uniteap in units. The initial output record provides a title.

The second record specifies column interpretations. Each subsequent record corresponds to an

individual. Details concerning EAP output are determined in the namelist group eapoutput.

Examples of use of printeap equal to .TRUE. are found in listening1.txt and fourskillle.txt. If

printeap is .FALSE., its default value, then EAP vectors and corresponding conditional covariance

matrices are not saved in an output file.

4.32.3 printeapskill

If the logical variable printeapskill is .TRUE., then EAP vectors and corresponding

conditional covariance matrices are provided for the transformed latent vectors Aθi. The output

unit is specified by uniteapskill in units. The format is essentially the same as that used for output

when .TRUE. is the value of printeap. Details concerning EAP output are determined in the

namelist group eapoutput. An example of printeapskill equals .TRUE. is found in threefacte.txt.

Note the output in threefacteapskill.csv. If printeapskill is .FALSE., its default value, then the

EAP output for skills is not saved in an output file.

4.32.4 printeapwt

If the logical variable printeapwt is .TRUE. and if dimwtsum is .TRUE. in the namelist

group eapoutput, then EAP vectors and corresponding conditional covariance matrices are

provided for a vector of weighted sums. The output unit is specified by uniteapwt in units. The

output format is essentially the same as for the output that results if .TRUE. is the value of

printeap. Details concerning EAP output are determined in the namelist groups eapoutput and

weightedsum. If dimwtsum is .FALSE., its default value, then EAP output for weighted sums

is not provided. An example of printeapwt equal to .TRUE. is found in listening1.txt. The

corresponding output file is listeningeapwt.csv.
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4.32.5 printent

If the logical variable printent is .TRUE., its default value, then an information summary

is provided in the output file that corresponds to unitinfo. For a description of the output for this

option, see unitinfo. If printent is .FALSE., then the information summary is not provided.

4.32.6 printgrad

If the logical variable printgrad is .TRUE., then gradient ∇`i(γ̂) is provided for each

person i, 1 ≤ i ≤ n, in the file associated with unit unitgrad. If printgrad is .FALSE., its default

value, then this output is not provided. For example, in listening1.txt, the gradients are found in

listeninggrads.csv.

4.32.7 printmargin

If the logical variable printmargin is .TRUE., then a summary of marginal distributions

of items is provided in the file corresponding to unit unitmargin. If printmargin is .FALSE.,

its default value, then this summary is not provided. See unitmargin for further details. In

listening1.txt, the summary is sent to listeningmarg.csv.

4.32.8 printmarginres

If the logical variable printmarginres is .TRUE., then the summary of marginal

distributions of items on unitmargin includes information on residuals. If printmarginres is

.TRUE., then .TRUE. is also the value of printmargin. If .FALSE., the default value, is the value

of printmarginres, then adjusted residuals are not supplied on unitmargin. For an example with

printmarginres equals .TRUE., see unitmargin. In listening1.txt, the adjusted residuals are found

in listeningmarg.csv.

4.32.9 printmarginwtsum

If the logical variable printmarginwtsum is .TRUE., then a summary of the

marginal distribution of weighted sums of item scores is provided in the file associated with

unitmarginwtsum. If printmarginwtsum is .FALSE., its default value, then the summary is not

provided. In listening1.txt, the summary of the marginal distribution of the sum of the response
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scores is found in listeningmargwtsum.csv. In listening1.txt, the adjusted residuals are found in

listeningmargwtsum.csv.

4.32.10 printmarginwtsumres

If the logical variable printmarginwtsumres is .TRUE., then the summary of marginal

distributions of weighted sums provided in the output file associated with unitmarginwtsum

includes information on residuals. If printmarginwtsumres is .TRUE., then .TRUE. is also the

value of printmarginwtsum. If printmarginwtsumres is .FALSE., its default value, then information

on residuals is not provided for marginal weighted sums. In listening1.txt, the adjusted residuals

are found in listeningmargwtsum.csv.

4.32.11 printmargin2

If the logical variable printmargin2 is .TRUE., then a summary of observed and fitted

marginal distributions of item pairs is provided in the file associated with unitmargin2. If

printmargin2 is .FALSE., its default value, then the summary is not provided. In listening1.txt,

the summaries are found in listeningmarg2.csv.

4.32.12 printmargin2res

If the logical variable printmargin2res is .TRUE., then the summary of marginal

distributions of item pairs includes information on residuals. If the logical variable printmargin2res

is .TRUE., then .TRUE. is also the value of printmargin2. If printmargin2res is .FALSE., its

default value, then the adjusted residuals are not provided. In listening1.txt, the adjusted residuals

are found in listeningmarg2.csv.

4.32.13 printmp

If the logical variable printmp is .TRUE., then maximum a posteriori estimates and

estimated information matrices are provided for examinees in the file associated with unit unitmp.

This command is only used if the model uses a normal distribution for the latent vector. If

printmp is .FALSE., its default value, then these estimates are not provided. In listening1.txt, the

estimates are found in listeningmap.csv.
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4.32.14 printparam

If the logical variable printparam is .TRUE., its default value, then estimates of γ and

corresponding estimated asymptotic standard errors are provided in the output file associated

with unit unitparam. If printparam is .FALSE., then these estimates are not provided.

4.32.15 printparamcov

If the logical variable printparamcov is .TRUE., then the standard estimated asymptotic

covariance matrix of γ̂ is provided in the output file associated with unit unitparamcov. If

printparamcov is .FALSE., its default value, then this estimated asymptotic covariance matrix is

not supplied. In listening1.txt, the estimates are found in listeningcov.csv.

4.32.16 printparamcov complex

If the logical variable printparamcov complex is .TRUE., then the output file associated

with unit unitparamcov complex is used to provide the estimated asymptotic covariance matrix

of γ̂ based on complex sampling. If printparamcov complex is .FALSE., its default value, then

this estimated asymptotic covariance matrix is not supplied. In listeningcc.txt, the estimated

covariance matrix is in listeningcovc.csv.

4.32.17 printparamcov louis

If the logical variable printparamcov louis is .TRUE., then the Louis estimated asymptotic

covariance matrix of γ̂ is provided in the output file associated with unit unitparamcov louis.

If printparamcov louis is .FALSE., its default value, then this estimated asymptotic covariance

matrix is not supplied. In listeningcl.txt, the estimated covariance matrix is in listeningcovl.csv.

4.32.18 printparamcov sandwich

If the logical variable printparamcov sandwich is .TRUE., then the sandwich estimated

asymptotic covariance matrix of γ̂ is provided in the output file associated with unit

unitparamcov sandwich. If printparamcov sandwich is .FALSE., its default value, then this

estimated asymptotic covariance matrix is not supplied. In listeningcs.txt, the estimated

covariance matrix is in listeningcovs.csv.
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4.32.19 printpost

If the logical variable printpost is .TRUE., then a posterior distribution of θi is provided

for each observation i in the file associated with unit unitpost. The posterior distribution is

specified by the quadrature points and the weights used for that observation to compute the

log-likelihood function. If printpost is .FALSE., its default value, then posterior distributions are

not provided. In listening1.txt, the posterior distributions are found in listeningpost.csv.

4.32.20 printpreditem

If the logical variable printpreditem is .TRUE., then observed and fitted totals and averages

over all examinees are obtained for products of category indicator functions for examinee i and

predictors Ziu for u > 1. If printpreditem is .FALSE., its default value, then these sums are

not obtained. To illustrate the case of printpreditem and printpredtitemres set to .TRUE., see

Four3Cn25twog.txt and Four3Cn25twogpreditem.csv. In this case, the predictor is an indicator

for membership in Group 2 rather than Group 1, so that the observed average for an item is the

fraction of observations with both a correct response to the item and membership in Group 2.

Thus a positive residual indicates that, in Group 2, more examinees answered the item correctly

than expected from the fitted model.

4.32.21 printpredtitemres

If the logical variable printpredtitemres is .TRUE., then residuals are obtained for observed

and fitted totals and averages over all examinees for products of category indicator functions for

examinee i and predictors Ziu for u > 1. If printpredtitemres is .FALSE., its default value, then

these residuals are not obtained. If printpredtitemres is .TRUE., then .TRUE. is also the value of

printpreditem.

4.32.22 printprob

If the logical variable printpost is .TRUE., then the estimated marginal probability for

the observed response for each observation is provided in the file specified by unit printprob. If

printprob is .FALSE., its default value, then estimated marginal probabilities are not provided. In

listening3.txt, the estimates are found in listeningprob.csv.
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4.32.23 printrel

If the logical variable printrel is .TRUE., then reliability coefficients for the elements θ̂ik,

1 ≤ k ≤ K, of the EAP θ̂i of the underlying latent vector θi are provided in the file corresponding

to unit unitrel. Output also includes the estimated covariance matrices of θ̂i, θi − θ̂i, and θi.

If the logical variable printrel is .FALSE., its default value, then these estimated reliability

coefficients and covariance matrices are not provided. In listening1.txt, the estimates are found in

listening.csv.

4.32.24 printrelskill

If the logical variable printrelskill is .TRUE., then reliability coefficients for the elements

of the EAP Aθ̂i of the transformed latent vector Aθi are provided in the file corresponding to

unit unitrelskill. Output also includes estimated covariance matrices of Aθ̂i, Aθi−Aθ̂i, and Aθi.

If the logical variable printrelskill is .FALSE., its default value, then these estimated reliability

coefficients and covariance matrices are not provided. In threefacte.txt, the estimates are found in

threefact.csv.

4.32.25 printrelwt

If the logical variable printrelwt is .TRUE., then reliability coefficients for the elements

of the EAP T̂Si of the expected weighted sum TSi given the latent vector θi and the covariate

vector Zi are provided in the file corresponding to unit unitrelwt. Output also includes estimated

covariance matrices for T̂Si, T̃Si − T̂Si, and T̃Si. If the logical variable printrelwt is .FALSE.,

its default value, then these estimated reliability coefficients and covariance matrices are not

provided. In listening1.txt, the estimates are found in listening.csv. In this example, TSi is the

sum score for the test for examinee i, and T̃Si is the test characteristic function at θi1 for the sum

score for the Listening test.

4.32.26 printwtitem

If the logical variable printwtitem is .TRUE., then observed and fitted totals and averages

over all examinees are obtained for products of category indicator functions for examinee i and

weighted sums defined in readweight. If printwtitem is .FALSE., its default value, then these

sums are not obtained. To illustrate the case of printwtitem and printwtitemres set to .TRUE.,
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see listening6.txt, listeningr.txt, listeningwtitem.csv, and listeningrwtitem.csv.

4.32.27 printwtitemres

If the logical variable printwtitem is .TRUE., then residuals are obtained for observed

and fitted totals and averages over all examinees for products of category indicator functions for

examinee i and weighted sums defined in readweight. If printwtitem is .FALSE., its default value,

then these residuals are not obtained. If printwtitemres is .TRUE., then .TRUE. is also the value

of printwtitem.

4.33 eapoutput

If printeap, printeapskill, printeapwt, printrel, printrelskill, or printrelwt is .TRUE., then

the namelist group eapoutput specifies characteristics of EAP estimates to be computed. The

group has the following members:

• dimwtsum

• eap mask

• alt beta

4.33.1 dimwtsum

The integer variable dimwtsum provides the dimension DS of the weighted sum TSi. If

dimwtsum is not positive, then no weighted sum is considered. The default value of dimwtsum is

0. In listening2.txt, a single weighted sum is used, so that dimwtsum is 1. This weighted sum is

the sum of the item scores for the Listening section. It is used in reliability estimation and in

determination of EAP values. See listening2.csv and listeningeapwt.csv.

4.33.2 eap mask

The logical array eap mask has J elements. If element j of eap mask is .TRUE., its

default value, then response Xij is used to compute the EAP. If element j of element eap mask

is .FALSE., then Xij is not employed to compute EAP values for observation i. This option is

sometimes relevant when data include both operational sections and external anchors, and EAP
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information is desired for the operational items. In listening4.txt, EAP estimates are based on the

first 28 of the 34 items. Results are in listening4.csv and listening4eap.csv.

4.33.3 alt beta

The real array alt beta has the same dimension of β̂. It can be employed to change

values of β̂. For each element of alt beta, the default value is the corresponding element of

β̂. In Four3Cn25twog2.txt, EAP estimates are obtained as if all examinees were from the first

group. In Four3Cn25twog.txt, ordinary EAP estimates are obtained. This issue can arise from

fairness consideration in an examination. It is not usually appropriate to give two examinees

with identical responses different scores because they are in different groups. Results are in

Four3Cn25twog2.csv and Four3Cn25twog2eap.csv for the EAP estimates that ignore group

differences and in Four3Cn25twog.csv and Four3Cn25twogeap.csv for the conventional EAP

estimates. The results are obviously the same for members of Group 1. Differences for members

of Group 2 are quite small.

4.34 weightedsum

If DS is positive and if printeapwt or printrelwt is .TRUE., then an input record for the

namelist group weightedsum is read for each dimension d from 1 to DS. This group has the

following two variables:

• weight name

• weight sum

4.34.1 weight name

This character variable of length 16 provides a name for the dth weighted sum. The

default value for weight name is the name of skill d (see skill name) if either d is no greater than

DS and DS ≤ D or d is not greater than D and DS > D. If DS is 1 and D > 1, then the default

value is ‘Total’, while for DS greater than 1 but less than D, the default value for d equals DS is

‘Remainder’. If DS is D + 1 and D > 1, then the default value for d = D + 1 is ‘Total’. If DS

exceeds D+ 1 and d > D+ 1 or DS is D+ 1, D = 1, and d > D, then the default value is ‘Sum d’.

In listening2.txt, weightname is ‘Listening sum’.
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4.34.2 weight sum

The real array weight sum has dimension
∑

j∈J Hj . Element
∑j

j′=1Hj′ + (h − Hj)

corresponds to element d of ISj(h − 1) for 1 ≤ h ≤ Hj and 1 ≤ j ≤ J . The default value for

element
∑j

j′=1Hj′ + (h −Hj) of the array is g if h is in Hgj for 0 ≤ g ≤ Gj − 1, the number of

slope parameters for skill d is positive, and either d is no greater than DS and DS ≤ D or d is

not greater than D and DS > D. If DS is D + 1 and D > 1, then the default value is g if h

is in Hgj . Otherwise, the default value is 0. In listening2.txt, the default value is used, so that

the weighted sum is simply the sum of the Listening item scores. Note results in listening2.csv

and listeningeapwt.csv. For a more complex case, consider listening5.txt, listening5.csv, and

listeningeap5.csv. In this case, the Listening sum is divided into two components, the sum for

the first half of the test and the sum for the second half of the test. Because reported reliability

estimates are for expected sums given the latent variable, these estimates are quite similar for the

two sums of scores for halves of the test and for the total sum. This situation would be quite

different were reliability estimates from classical test theory computed for these three sums of item

scores.

4.35 numberweights

If printmarginwtsum is .TRUE., then numberweights provides the number of weighted

sums used for marginal distributions. This namelist group has the following element:

• numweights

4.35.1 numweights

The integer variable numweights is the number of weighted sums used for marginal

distributions. The default value of numweights is 0, and any read negative value of numweights is

changed to 0. If numweights is positive, then numweights namelist groups readweight are read. In

listening1.txt, numweights is 1, so that one weighted sum is used.

4.36 readweight

The namelist group readweight has the following variables:
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• weightname

• weight

4.36.1 weightname

The character variable weightname has length 16. Default values are determined as

in the case of weight name for the dth group, except that DS is replaced by numweights. In

listening1.txt, weightname is the name ‘Listening sum’ assigned to the sum of the item scores.

4.36.2 weight

The integer array weight has
∑J

j=1Gj elements wgjd, 0 ≤ g ≤ Gj , 1 ≤ j ≤ J , and the sum∑J
j=1wXijj is considered for each examinee i such that item j is presented whenever wgjd is not

constant for 0 ≤ g ≤ Gj − 1. The distribution of the weighted sum under the model is computed

by use of a recursive function. The algorithm is closely related to a procedure of Lord and

Wingersky (1984) for dichotomous items that was generalized by Thissen, Pommerich, Billeaud,

and Williams (1995). In listening1.txt, the default option for weight applies, so that the sum of

the item scores is computed. Results are found in listeningmargwtsum.csv. Both the marginal

distribution and adjusted residuals are provided. An examination of the adjusted residuals shows

some model deviation, although the absolute size of errors is relatively small.

4.37 Projected Additions

Additional summaries and associated residuals are planned that involve totals and averages

of products of category indicators and either predicting variables or external variables. Summary

statistics are also planned in which conditional and unconditional expectations are compared for

functions of observed responses, predicting variables, external variables, and latent vectors.

Simplified procedures are planned for fixing specific parameter values and for imposition

of linear constraints on parameters that are not required for model identification. For example,

options are planned to permit specification of values for all item discriminations without resorting

to designspecs. Currently one can readily specify that all item discriminations associated with a

skill must be the same or must be 1; however, one cannot readily impose other restrictions on

item discriminations.
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Procedures are planned to automate dummy coding of predictors and to automate use of

interactions of predictor variables.

Plans exist to compute a variety of functions of model parameters on request. For example,

item difficulties and associated estimated asymptotic standard errors are planned. In addition,

the estimated covariance matrix and correlation matrix of the underlying latent vector or the

transformed latent vector are to be reported if requested.

To facilitate efficient computation when the dimension K is relatively large or when each

examinee receives only a small fraction of the items, additional quadrature options are planned.

Special attention will be given to hierarchical structures such as bifactor models (Gibbons et al.,

2007; Gibbons & Hedeker, 1982).

Methods for model comparison and methods for selection of subsets of observations for

analysis have not yet been implemented.
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